Chemical analysis of Hg0-containing Hindu religious objects

Autoři: Adam M. Kiefer aff001;  Caryn S. Seney aff001;  Evelyn A. Boyd aff001;  Caroline Smith aff001;  Darran S. Shivdat aff001;  Elaina Matthews aff001;  Michael W. Hull aff002;  Christy C. Bridges aff003;  Amber Castleberry aff001
Působiště autorů: Department of Chemistry, Mercer University, Macon, Georgia, United States of America aff001;  Analytical Instrumentation, Olympus Corporation of the Americas, Webster, Texas, United States of America aff002;  Department of Biomedical Sciences, Mercer University School of Medicine, Macon, Georgia, United States of America aff003
Vyšlo v časopise: PLoS ONE 14(12)
Kategorie: Research Article


Parad items used in Hindu practices and Ayurvedic medicines contain elemental mercury (Hg0) and have traditionally been used in prayer and to treat a variety of diseases including diabetes, heart conditions, and sexual dysfunction. These items are often referred to as amalgams of silver, and take the form of shivlings, statues of gods, necklaces, and other jewelry. Fourteen parad items were purchased from online vendors in India and the United States and analyzed. All items produced copious amounts of Hg0 vapor, with Hg0 concentrations exceeding 1,000,000 ng/m3 as measured using a Mercury Instruments Mercury Tracker 3000 IP atomic absorption spectrometer. Measured concentrations were highly variable, so a simple qualitative experiment employing a UV-C light source and a thin-layer chromatography plate impregnated with a fluorescent dye that glows green when irradiated at 254 nm allowed for the indirect visualization of the Hg0 being evolved. In addition, all items were screened using a hand-held X-ray fluorescence analyzer to estimate the concentration of Hg, Sn, Pb, As, and Cd on the surface of the item. Select samples were then digested in aqua regia and analyzed for Hg content using a direct mercury analyzer. All samples were found to exceed 20% by mass Hg. The digestates were analyzed using inductively-coupled plasma–optical emission spectrometry and were determined to be between 10–55% by mass Pb and contain up to 0.3% by mass As. While Article 4 of the Minamata Convention on Mercury specifically requires parties to stop importing, exporting, and manufacturing Hg-added products, products used in traditional and religious practices are excluded.

Klíčová slova:

Metallic lead – Metallic mercury – Milk – Religion – Thin-layer chromatography – Vapors – Mercury alloys – Ayurveda


1. Basu N, Clarke E, Green A, Calys-Tagoe B, Chan L, Dzodzomenyo M, et al. Integrated Assessment of Artisanal and Small-Scale Gold Mining in Ghana—Part 1: Human Health Review. Int J Environ Res Public Health. 2015;12: 5143–5176. doi: 10.3390/ijerph120505143 25985314

2. Hylander LD. Gold and Amalgams: Environmental Pollution and Health Effects. Encyclopedia of Environmental Health. Encyclopedia of Environmental Health Burlington: Elsevier; 2011. Available:

3. Steckling N, Tobollik M, Plass D, Hornberg C, Ericson B, Fuller R, et al. Global Burden of Disease of Mercury Used in Artisanal Small-Scale Gold Mining. Ann Glob Health. 2017;83: 234–247. doi: 10.1016/j.aogh.2016.12.005 28619398

4. Milne J, Christophers A, Silva PD. Acute mercurial pneumonitis. Br J Ind Med. 1970;27: 334–338. doi: 10.1136/oem.27.4.334 5488692

5. Bose-O’Reilly S, Lettmeier B, Gothe RM, Beinhoff C, Siebert U, Drasch G. Mercury as a serious health hazard for children in gold mining areas. Environ Res. 2008;107: 89–97. doi: 10.1016/j.envres.2008.01.009 18321481

6. Bose-O’Reilly S, Bernaudat L, Siebert U, Roider G, Nowak D, Drasch G. Signs and symptoms of mercury-exposed gold miners. Int J Occup Med Environ Health. 2017;30: 249–269. doi: 10.13075/ijomeh.1896.00715 28366955

7. Niladri Basu, Milena Horvat, Evers David C., Zastenskaya Irina, Weihe Pál, Tempowski Joanna. A State-of-the-Science Review of Mercury Biomarkers in Human Populations Worldwide between 2000 and 2018. Environ Health Perspect. 126: 106001. doi: 10.1289/EHP3904 30407086

8. Obrist D, Kirk JL, Zhang L, Sunderland EM, Jiskra M, Selin NE. A review of global environmental mercury processes in response to human and natural perturbations: Changes of emissions, climate, and land use. Ambio. 2018;47: 116–140. doi: 10.1007/s13280-017-1004-9 29388126

9. Driscoll CT, Mason RP, Chan HM, Jacob DJ, Pirrone N. Mercury as a Global Pollutant: Sources, Pathways, and Effects. Environ Sci Technol. 2013;47: 4967–4983. doi: 10.1021/es305071v 23590191

10. Global Mercury Assessment 2013: Sources, Emissions, Releases and Environmental Transport. Geneva: United Nations Pubns; 2013. Available:

11. Environment UN. Global Mercury Assessment 2018. In: UNEP—UN Environment Programme [Internet]. 4 Mar 2019 [cited 29 Oct 2019]. Available:

12. Clarkson TW, Magos L. The Toxicology of Mercury and Its Chemical Compounds. Crit Rev Toxicol. 2006;36: 609–662. doi: 10.1080/10408440600845619 16973445

13. Copan L, Fowles J, Barreau T, McGee N. Mercury Toxicity and Contamination of Households from the Use of Skin Creams Adulterated with Mercurous Chloride (Calomel). Int J Environ Res Public Health. 2015;12: 10943–10954. doi: 10.3390/ijerph120910943 26364641

14. Centers for Disease Control and Prevention (CDC). Mercury exposure among household users and nonusers of skin-lightening creams produced in Mexico—California and Virginia, 2010. MMWR Morb Mortal Wkly Rep. 2012;61: 33–36. 22258417

15. Hamann CR, Boonchai W, Wen L, Sakanashi EN, Chu C-Y, Hamann K, et al. Spectrometric analysis of mercury content in 549 skin-lightening products: Is mercury toxicity a hidden global health hazard? J Am Acad Dermatol. 2014;70: 281–287.e3. doi: 10.1016/j.jaad.2013.09.050 24321702

16. Mohammed T, Mohammed E, Bascombe S. The evaluation of total mercury and arsenic in skin bleaching creams commonly used in Trinidad and Tobago and their potential risk to the people of the Caribbean. J Public Health Res. 2017;6: 1097. doi: 10.4081/jphr.2017.1097 29291194

17. Donohue A, Wagner CL, Burch JB, Rothenberg SE. Blood total mercury and methylmercury among pregnant mothers in Charleston, South Carolina, USA. J Expo Sci Environ Epidemiol. 2018;28: 494. doi: 10.1038/s41370-018-0033-1 29670220

18. García-Hernández J, Ortega-Vélez MI, Contreras-Paniagua AD, Aguilera-Márquez D, Leyva-García G, Torre J. Mercury concentrations in seafood and the associated risk in women with high fish consumption from coastal villages of Sonora, Mexico. Food Chem Toxicol. 2018;120: 367–377. doi: 10.1016/j.fct.2018.07.029 30026089

19. Malm O, Guimarães JRD, Castro MB, Bastos WR, Viana JP, Branches FJP, et al. Follow-up of mercury levels in fish, human hair and urine in the Madeira and Tapajós basins, Amazon, Brazil. Water Air Soil Pollut. 1997;97: 45–51. doi: 10.1023/A:1018340619475

20. Programme UNE. Minamata convention on mercury: text and annexes. 2013 [cited 12 Apr 2019]. Available:

21. Minamata Convention on Mercury > Home. [cited 9 Feb 2018]. Available:

22. Clifford MJ. Future strategies for tackling mercury pollution in the artisanal gold mining sector: Making the Minamata Convention work. Futures. 2014;62, Part A: 106–112. doi: 10.1016/j.futures.2014.05.001

23. Eriksen HH, Perrez FX. The Minamata Convention: A Comprehensive Response to a Global Problem. Rev Eur Comp Int Environ Law. 2014;23: 195–210. doi: 10.1111/reel.12079

24. Evers DC, Keane SE, Basu N, Buck D. Evaluating the effectiveness of the Minamata Convention on Mercury: Principles and recommendations for next steps. Sci Total Environ. 2016;569–570: 888–903. doi: 10.1016/j.scitotenv.2016.05.001 27425440

25. Gustin MS, Evers DC, Bank MS, Hammerschmidt CR, Pierce A, Basu N, et al. Importance of Integration and Implementation of Emerging and Future Mercury Research into the Minamata Convention. Environ Sci Technol. 2016;50: 2767–2770. doi: 10.1021/acs.est.6b00573 26941010

26. Selin H. Global Environmental Law and Treaty-Making on Hazardous Substances: The Minamata Convention and Mercury Abatement. Glob Environ Polit. 2014;14: 1–19. doi: 10.1162/GLEP_a_00208

27. Singh A, Ota S, Srikanth N, Sreedhar B, Dhiman KS. Chemical characterization of an Ayurvedic herbo-mineral preparation- Arogyavardhani Vati: A potential tool for quality assurance. IJTK Vol171 January 2018. 2018 [cited 4 Mar 2019]. Available:

28. Ali MA, Hamiduddin Zaigham M, Ikram M, Ranjan R. Pharmaceutico-analytical Study of Kushtae Shangarf Prepared with Jozbua (Myristica fragrans Houtt.) and Phitkari (Alum). J Pharm Bioallied Sci. 2018;10: 144–158. doi: 10.4103/jpbs.JPBS_25_17 30237685

29. Sharma V, Samal AK, Pandey S, Chaudhary AK, Srivastava RK. Characterization of Hg-based ayurvedic drug Kajjali: classical and contemporary approaches. Curr Sci 00113891. 2018;115: 1174–1178. doi: 10.18520/cs/v115/i6/1174-1178

30. Lynch E, Braithwaite R. A review of the clinical and toxicological aspects of ‘traditional’ (herbal) medicines adulterated with heavy metals. Expert Opin Drug Saf. 2005;4: 769–778. doi: 10.1517/14740338.4.4.769 16011453

31. Mukhi P, Mohapatra SS, Bhattacharjee M, Ray KK, Muraleedharan TS, Arun A, et al. Mercury based drug in ancient India: The red sulfide of mercury in nanoscale. J Ayurveda Integr Med. 2017;8: 93–98. doi: 10.1016/j.jaim.2017.01.009 28600164

32. Saper RB, Phillips RS, Sehgal A, Khouri N, Davis RB, Paquin J, et al. Lead, Mercury, and Arsenic in US- and Indian-Manufactured Ayurvedic Medicines Sold via the Internet. JAMA. 2008;300: 915–923. doi: 10.1001/jama.300.8.915 18728265

33. THE SPIRITUAL USE OF POISONOUS MERCURY. Washington Post. 13 Aug 1991. Available: Accessed 11 Jan 2019.

34. Charles Masur L. A Review of the Use of Mercury in Historic and Current Ritualistic and Spiritual Practices. Altern Med Rev. 2011;16: 314–322. 22214251

35. Newby CA, Riley DM, Leal-Almeraz TO. Mercury Use and Exposure among Santeria Practitioners: Religious versus Folk Practice in Northern New Jersey, USA. Ethn Health. 2006;11: 287–306. doi: 10.1080/13557850600565616 16774879

36. Riley DM, Newby CA, Leal-Almeraz TO. Incorporating Ethnographic Methods in Multidisciplinary Approaches to Risk Assessment and Communication: Cultural and Religious Uses of Mercury in Latino and Caribbean Communities. Risk Anal Int J. 2006;26: 1205–1221. doi: 10.1111/j.1539-6924.2006.00809.x 17054526

37. Geer LA, Persad MD, Palmer CD, Steuerwald AJ, Dalloul M, Abulafia O, et al. Assessment of prenatal mercury exposure in a predominately Caribbean immigrant community in Brooklyn, NY. J Environ Monit. 2012;14: 1035–1043. doi: 10.1039/c2em10835f 22334237

38. Rogers HS, Jeffery N, Kieszak S, Fritz P, Spliethoff H, Palmer CD, et al. Mercury Exposure in Young Children Living in New York City. J Urban Health. 2008;85: 39–51. doi: 10.1007/s11524-007-9230-2 17957474

39. Garetano G, Gochfeld M, Stern AH. Comparison of Indoor Mercury Vapor in Common Areas of Residential Buildings with Outdoor Levels in a Community Where Mercury Is Used for Cultural Purposes. Environ Health Perspect. 2006;114: 59–62. doi: 10.1289/ehp.8410 16393659

40. Yadav KD, Chaudhary AK. Classical and contemporary methods for conversion of toxic unstable mercury to safe and stable mercury. IJTK Vol153 July 2016. 2016 [cited 12 Nov 2018]. Available:

41. Yadav KD, Chaudhary AK. Is mercury really toxic? The way forward for its judicious medicinal applications based on the therapeutic doctrines of Ayurveda. Curr Sci 00113891. 2018;114: 1650–1655. doi: 10.18520/cs/v114/i08/1650-1655

42. Forman J, Moline J, Cernichiari E, Sayegh S, Torres JC, Landrigan MM, et al. A Cluster of Pediatric Metallic Mercury Exposure Cases Treated with meso-2,3-Dimercaptosuccinic Acid (DMSA). Environ Health Perspect. 2000;108: 575. doi: 10.1289/ehp.00108575 10856034

43. Ernst E, Coon JT. Heavy metals in traditional Chinese medicines: A systematic review. Clin Pharmacol Ther. 2001;70: 497–504. doi: 10.1067/mcp.2001.120249 11753265

44. Son H-Y, Lee S, Park S-B, Kim M-S, Choi E-J, Singh TSK, et al. Toxic effects of mercuric sulfide on immune organs in mice. Immunopharmacol Immunotoxicol. 2010;32: 277–283. doi: 10.3109/08923970903305499 20017590

45. Huang C-F, Hsu C-J, Liu S-H, Lin-Shiau S-Y. Exposure to Low Dose of Cinnabar (a Naturally Occurring Mercuric Sulfide (HgS)) Caused Neurotoxicological Effects in Offspring Mice. J Biomed Biotechnol. 2012;2012. doi: 10.1155/2012/254582 22888198

46. Creating Networks and Information for Mercury Policy in India and Europe. New Delhi, India: Toxics Link; 2005.

47. Jenkins R. X-Ray Techniques: Overview. Encyclopedia of Analytical Chemistry. American Cancer Society; 2006. doi: 10.1002/9780470027318.a6801

48. Rousseau RM. The Quest for a Fundamental Algorithm in X-Ray Fluorescence Analysis and Calibration. Open Spectrosc J. 2009;3. Available: doi: 10.2174/1874383800903010058

49. Rousseau R, Boivin JA. The fundamental algorithm: A natural extension of Sherman equation. Rigaku J. 1998;15: 13–28.

50. van Sprang H A. Fundamental parameter methods in XRF spectroscopy. Adv X-Ray Anal. 2000;42.

51. Thomsen V. Basic fundamental parameters in X-ray fluorescence. Spectroscopy. 2007;22: 46–50.

52. Adam Kiefer. Parad items readily emit mercury vapor. [cited 14 Apr 2019]. Available:

53. Ferracane JL, Hanawa T, Okabe T. Effectiveness of Oxide Films in Reducing Mercury Release from Amalgams. J Dent Res. 1992;71: 1151–1155. doi: 10.1177/00220345920710050401 1607431

54. Winter TG. The evaporation of a drop of mercury. Am J Phys. 2003;71: 783–786. doi: 10.1119/1.1568971

55. Lerf A, Wagner FE, Herrera LK, Justo A, Mu noz-Páez A, Pérez-Rodríguez JL. Study of tin amalgam mirrors by 119Sn Mössbauer spectroscopy and other analytical methods. Hyperfine Interact. 2016;237: 55. doi: 10.1007/s10751-016-1279-4

56. Arizio E, Orsega E, Falcone R, Vallotto M. EDS and μ-XRF mapping of amalgam degradation products in ancient mirrors. Environ Sci Pollut Res. 2014;21: 13243–13251. doi: 10.1007/s11356-013-2129-4 24420559

57. Arizio E, Orsega E, Sommariva G, Falcone R. Tin amalgam mirrors: investigation by XRF, SEM-EDS, XRD and EPMA-WDS mapping. Appl Phys Mater Sci Process. 2013;111: 733. doi: 10.1007/s00339-013-7640-4

58. Okabe T, Ohmoto K, Nakajima H, Woldu M, Ferracane JL. Effect of Pd and In on Mercury Evaporation from Amalgams. Dent Mater J. 1997;16: 191–199,226. doi: 10.4012/dmj.16.191 9555257

59. Ohmoto K, Nakajima H, Ferracane JL, Shintani H, Okabe T. Mercury Evaporation from Amalgams with Varied Mercury Contents. Dent Mater J. 2000;19: 211–220. doi: 10.4012/dmj.19.211 11218842

60. Electrical and electronic waste—Environment—European Commission. [cited 14 Jul 2019]. Available:

61. Elam W T., Shen B, Scruggs B, Nicolosi J A. Fundamental parameters analysis of RoHS elements in plastics. Powder Diffr—POWDER DIFFR. 2006;21. doi: 10.1154/1.2219811

62. Rousseau R. How to Apply the Fundamental Parameters Method to the Quantitative X-ray Fluorescence Analysis of Geological Materials. J Geosci Geomat. 2013;1: 1–7. doi: 10.12691/jgg-1-1-1

63. Feret FR, Hamouche Hafida Boissonneault Yves. Spectral Interference in X-Ray Fluorescence Analysis of Common Materials. Adv X-Ray Anal. 2003;46: 381–387.

64. Gallhofer D, Lottermoser B. The Influence of Spectral Interferences on Critical Element Determination with Portable X-Ray Fluorescence (pXRF). Minerals. 2018;8: 320. doi: 10.3390/min8080320

65. ATSDR—Toxicological Profile: Mercury. [cited 26 Jun 2015]. Available:

66. Risher J, World Health Organization, United Nations Environment Programme, International Labour Organisation, Inter-Organization Programme for the Sound Management of Chemicals, International Program on Chemical Safety. Elemental mercury and inorganic mercury compounds: human health aspects. Geneva: World Health Organization; 2003.

67. US EPA. Mercury Vapor Results—AEGL Program. In: US EPA [Internet]. 4 Sep 2014 [cited 7 Apr 2019]. Available:

Článek vyšel v časopise


2019 Číslo 12
Nejčtenější tento týden