Effect of endometriosis on the fecal bacteriota composition of mice during the acute phase of lesion formation


Autoři: Josefine Hantschel aff001;  Severin Weis aff002;  Karl-Herbert Schäfer aff003;  Michael D. Menger aff001;  Matthias Kohl aff004;  Markus Egert aff002;  Matthias W. Laschke aff001
Působiště autorů: Institute for Clinical & Experimental Surgery, Saarland University, Homburg/Saar, Germany aff001;  Faculty of Medical and Life Sciences, Institute of Precision Medicine, Microbiology and Hygiene Group, Furtwangen University, Villingen-Schwenningen, Germany aff002;  Campus Zweibrücken, University of Applied Sciences Kaiserslautern, Zweibrücken, Germany aff003;  Faculty of Medical and Life Sciences, Institute of Precision Medicine, Group for Statistics in Biology and Medicine, Furtwangen University, Villingen-Schwenningen, Germany aff004
Vyšlo v časopise: PLoS ONE 14(12)
Kategorie: Research Article
doi: 10.1371/journal.pone.0226835

Souhrn

Accumulating evidence indicates that there is an interaction between the gut microbiota and endometriotic lesions. The new formation of these lesions is associated with stem cell recruitment, angiogenesis and inflammation, which may affect the composition of the gut microbiota. To test this hypothesis, we herein induced endometriotic lesions by transplantation of uterine tissue fragments from green fluorescent protein (GFP)+ donor mice into the peritoneal cavity of GFP- C57BL/6 wild-type mice. Sham-transplanted animals served as controls. Fecal pellets of the animals were collected 3 days before as well as 7 and 21 days after the induction of endometriosis to analyze the composition of the gut microbiota by means of 16S ribosomal RNA gene sequencing. The transplantation of uterine tissue fragments resulted in the establishment of endometriotic lesions in all analyzed mice. These lesions exhibited a typical histomorphology with endometrial glands surrounded by a vascularized stroma. Due to their bright GFP signal, they could be easily differentiated from the surrounding GFP- host tissue. Bacterial 16S rRNA genes were successfully PCR-amplified from the DNA extracts of all obtained mice fecal samples. However, no significant effect of endometriosis induction on the composition of the bacterial microbiota was detected with our experimental setup. Our findings allow careful speculation that endometriosis in mice does not induce pronounced dysbiosis during the acute phase of lesion formation.

Klíčová slova:

Bacteria – Gene sequencing – Gut bacteria – Microbiome – Polymerase chain reaction – Ribosomal RNA – Sequence assembly tools – Sequence databases


Zdroje

1. Giudice LC. Clinical practice. Endometriosis. N Engl J Med. 2010; 362:2389–2398. doi: 10.1056/NEJMcp1000274 20573927

2. Ferrero S, Evangelisti G, Barra F. Current and emerging treatment options for endometriosis. Expert Opin Pharmacother. 2018; 19:1109–1125. doi: 10.1080/14656566.2018.1494154 29975553

3. Kho RM, Andres MP, Borrelli GM, Neto JS, Zanluchi A, Abrão MS. Surgical treatment of different types of endometriosis: Comparison of major society guidelines and preferred clinical algorithms. Best Pract Res Clin Obstet Gynaecol. 2018; 51:102–110. doi: 10.1016/j.bpobgyn.2018.01.020 29545114

4. Bellelis P, Podgaec S, Abrão MS. Environmental factors and endometriosis. Rev Assoc Med Bras. (1992) 2011; 57:448–452. doi: 10.1590/s0104-42302011000400022 21876930

5. Augoulea A, Alexandrou A, Creatsa M, Vrachnis N, Lambrinoudaki I. Pathogenesis of endometriosis: the role of genetics, inflammation and oxidative stress. Arch Gynecol Obstet. 2012; 286:99–103. doi: 10.1007/s00404-012-2357-8 22546953

6. Vinatier D, Orazi G, Cosson M, Dufour P. Theories of endometriosis. Eur J Obstet Gynecol Reprod Biol. 2001; 96:21–34. doi: 10.1016/s0301-2115(00)00405-x 11311757

7. Laux-Biehlmann A, d'Hooghe T, Zollner TM. Menstruation pulls the trigger for inflammation and pain in endometriosis. Trends Pharmacol Sci. 2015; 36:270–276. doi: 10.1016/j.tips.2015.03.004 25899467

8. Jiang L, Yan Y, Liu Z, Wang Y. Inflammation and endometriosis. Front Biosci. (Landmark Ed) 2016; 21:941–948.

9. Laschke MW, Giebels C, Menger MD. Vasculogenesis: a new piece of the endometriosis puzzle. Hum Reprod Update. 2011; 17:628–636. doi: 10.1093/humupd/dmr023 21586449

10. Hufnagel D, Li F, Cosar E, Krikun G, Taylor HS. The Role of Stem Cells in the Etiology and Pathophysiology of Endometriosis. Semin Reprod Med. 2015; 33:333–340. doi: 10.1055/s-0035-1564609 26375413

11. Plottel CS, Blaser MJ. Microbiome and malignancy. Cell Host Microbe. 2011; 10:324–335. doi: 10.1016/j.chom.2011.10.003 22018233

12. Thaiss CA, Zmora N, Levy M, Elinav E. The microbiome and innate immunity. Nature. 2016; 535:65–74. doi: 10.1038/nature18847 27383981

13. Kwon O, Lee S, Kim JH, Kim H, Lee SW. Altered Gut Microbiota Composition in Rag1-deficient Mice Contributes to Modulating Homeostasis of Hematopoietic Stem and Progenitor Cells. Immune Netw. 2015; 15:252–259. doi: 10.4110/in.2015.15.5.252 26557809

14. Laschke MW, Menger MD. The gut microbiota: a puppet master in the pathogenesis of endometriosis? Am J Obstet Gynecol. 2016; 215:68.e1–4.

15. Chadchan SB, Cheng M, Parnell LA, Yin Y, Schriefer A, Mysorekar IU, et al. Antibiotic therapy with metronidazole reduces endometriosis disease progression in mice: a potential role for gut microbiota. Hum Reprod. 2019; 34:1106–1116. doi: 10.1093/humrep/dez041 31037294

16. Yuan M, Li D, Zhang Z, Sun H, An M, Wang G. Endometriosis induces gut microbiota alterations in mice. Hum Reprod. 2018; 33:607–616. doi: 10.1093/humrep/dex372 29462324

17. Rudzitis-Auth J, Nenicu A, Nickels RM, Menger MD, Laschke MW. Estrogen Stimulates Homing of Endothelial Progenitor Cells to Endometriotic Lesions. Am J Pathol. 2016; 186:2129–2142. doi: 10.1016/j.ajpath.2016.04.004 27315780

18. Okabe M, Ikawa M, Kominami K, Nakanishi T, Nishimune Y. 'Green mice' as a source of ubiquitous green cells. FEBS Lett. 1997; 407:313–319. doi: 10.1016/s0014-5793(97)00313-x 9175875

19. Rudzitis-Auth J, Menger MD, Laschke MW. Resveratrol is a potent inhibitor of vascularization and cell proliferation in experimental endometriosis. Hum Reprod. 2013; 28:1339–1347. doi: 10.1093/humrep/det031 23427233

20. Claesson MJ, O'Sullivan O, Wang Q, Nikkilä J, Marchesi JR, Smidt H, et al. Comparative analysis of pyrosequencing and a phylogenetic microarray for exploring microbial community structures in the human distal intestine. PLoS One. 2009; 4:e6669. doi: 10.1371/journal.pone.0006669 19693277

21. Engelbrektson A, Kunin V, Wrighton KC, Zvenigorodsky N, Chen F, Ochman H, et al. Experimental factors affecting PCR-based estimates of microbial species richness and evenness. ISME J. 2010; 4:642–647. doi: 10.1038/ismej.2009.153 20090784

22. Ding LJ, Su JQ, Xu HJ, Jia ZJ, Zhu YG. Long-term nitrogen fertilization of paddy soil shifts iron-reducing microbial community revealed by RNA-(13)C-acetate probing coupled with pyrosequencing. ISME J. 2015; 9:721–734. doi: 10.1038/ismej.2014.159 25171335

23. Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, et al. QIIME allows analysis of high-throughput community sequencing data. Nat Methods. 2010; 7:335–336. doi: 10.1038/nmeth.f.303 20383131

24. Pruesse E, Quast C, Knittel K, Fuchs BM, Ludwig W, Peplies J, et al. SILVA: a comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with ARB. Nucleic Acids Res. 2007; 35:7188–7196. doi: 10.1093/nar/gkm864 17947321

25. R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing 2008, Vienna, Austria. URL https://www.R-project.org/

26. Oksanen J, Blanchet FG, Friendly M, Kindt R, Legendre P, McGlinn D, et al. vegan: Community Ecology Package. R package version 2.4–6. https://CRAN.R-project.org/package=vegan; 2018.

27. Benjamini Y, Hochberg Y. Controlling The False Discovery Rate—A Practical And Powerful Approach To Multiple Testing. J R Stat Soc Ser B Method. 1995; 289–300.

28. Grümmer R. Animal models in endometriosis research. Hum Reprod Update. 2006; 12:641–649. doi: 10.1093/humupd/dml026 16775193

29. Rausch P, Basic M, Batra A, Bischoff SC, Blaut M, Clavel T, et al. Analysis of factors contributing to variation in the C57BL/6J fecal microbiota across German animal facilities. Int J Med Microbiol. 2016; 306:343–355. doi: 10.1016/j.ijmm.2016.03.004 27053239

30. Parker KD, Albeke SE, Gigley JP, Goldstein AM, Ward NL. Microbiome Composition in Both Wild-Type and Disease Model Mice Is Heavily Influenced by Mouse Facility. Front Microbiol. 2018; 9:1598. doi: 10.3389/fmicb.2018.01598 30079054

31. Majaneva M, Hyytiäinen K, Varvio SL, Nagai S, Blomster J. Bioinformatic Amplicon Read Processing Strategies Strongly Affect Eukaryotic Diversity and the Taxonomic Composition of Communities. PLoS One. 2015; 10:e0130035. doi: 10.1371/journal.pone.0130035 26047335

32. Ata B, Yildiz S, Turkgeldi E, Brocal VP, Dinleyici EC, Moya A, et al. The Endobiota Study: Comparison of Vaginal, Cervical and Gut Microbiota Between Women with Stage 3/4 Endometriosis and Healthy Controls. Sci Rep. 2019; 9:2204. doi: 10.1038/s41598-019-39700-6 30778155

33. Egert M, Graaf AA de, Smidt H, Vos WM de, Venema K. Beyond diversity: functional microbiomics of the human colon. Trends Microbiol. 2006; 14:86–91. doi: 10.1016/j.tim.2005.12.007 16406528


Článek vyšel v časopise

PLOS One


2019 Číslo 12