Reaction-diffusion memory unit: Modeling of sensitization, habituation and dishabituation in the brain


Autoři: Matthew M. Carnaghi aff001;  Joseph M. Starobin aff001
Působiště autorů: Department of Nanoscience, Joint School of Nanoscience and Nanoengineering, University of North Carolina at Greensboro, Greensboro, North Carolina, United States of America aff001
Vyšlo v časopise: PLoS ONE 14(12)
Kategorie: Research Article
doi: 10.1371/journal.pone.0225169

Souhrn

We propose a novel approach to investigate the effects of sensitization, habituation and dishabituation in the brain using the analysis of the reaction-diffusion memory unit (RDMU). This unit consists of Morris-Lecar-type sensory, motor, interneuron and two input excitable cables, linked by four synapses with adjustable strength defined by Hebbian rules. Stimulation of the sensory neuron through the first input cable causes sensitization by activating two excitatory synapses, C1 and C2, connected to the interneuron and motor neuron, respectively. In turn, the stimulation of the interneuron causes habituation through the activation of inhibitory synapse C3. Likewise, dishabituation is caused through the activation of another inhibitory synapse C4. We have determined sensitization-habituation (BSH) and habituation-dishabituation (BHDH) boundaries as functions between synaptic strengths C2 and C3 at various strengths of C1 and C4. When BSH and BHDH curves shift towards larger values of C2, the RDMU can be easily inhibited. On the contrary, the RDMU can be easily sensitized or dishabituated if BSH and BHDH curves shift towards smaller values of C2. Our numerical simulations readily demonstrate that higher values of the Morris-Lecar relaxation parameter, greater leakage and potassium conductances, reduced length of the interneuron, and higher values of C1 all result in easier habituation of the RDMU. In contrast, we found that at higher values of C4 the RDMU becomes significantly more prone to dishabituation. Based on these simulations one can quantify BSH and BHDH curve shifts and relate them to particular neural outcomes.

Klíčová slova:

Action potentials – Interneurons – Memory – Motor neurons – Neurons – Synapses – Wave propagation – Sensory neurons


Zdroje

1. Takeuchi T, Duszkiewicz AJ, Morris RGM. The synaptic plasticity and memory hypothesis: encoding, storage and persistence. Phil. Trans. R. Soc. B. 2014; 369: 1–14.

2. Kandel ER, Dudai Y, Mayford MR. The molecular and systems biology of memory. Cell. 2014; 157: 163–186. doi: 10.1016/j.cell.2014.03.001 24679534

3. Halberstadt AL, Geyer MA. Habituation and sensitization of acoustic startle: Opposite influences of dopamine D 1 and D 2 -family receptors. Neurobiology of Learning and Memory. 2009; 92: 243–248. doi: 10.1016/j.nlm.2008.05.015 18644244

4. Groves PM, Thompson RF. Habituation: A dual-process theory. Physchological Review. 1970; 77: 419–450.

5. Kandel ER. The molecular biology of memory storage: a dialogue between genes and synapses. Science. 2001; 294: 1030–1038. doi: 10.1126/science.1067020 11691980

6. Kandel ER, Tauc L. Heterosynaptic facilitation in neurones of the abdominal ganglion of aplysia depilans. J. Phisiol. 1965; 181: 1–27.

7. Malenka RC, Bear MF. LTP and LTD: An embarrassment of riches. Neuron. 2004; 44: 5–21. doi: 10.1016/j.neuron.2004.09.012 15450156

8. Gerstner W, Naud R. How good are neuron models. Science 2009; 326: 379–380. doi: 10.1126/science.1181936 19833951

9. Izhikevich EM. Which model to use for cortical spiking neurons?. IEEE Transactions on Neural Networks. 2004; 15: 1063–1070. doi: 10.1109/TNN.2004.832719 15484883

10. Golomb D, Ermentrout GB. Bistability in pulse propogation in networks of excitatory and inhibitory populations. Physical Review Letters. 2001; 86: 4179–4182. doi: 10.1103/PhysRevLett.86.4179 11328125

11. Haselwandter CA, Kardar M, Triller A, Azeredo da Silveira R. Self-assembly and plasticity of synaptic domains through a reaction-diffusion mechanism. Physical Review E. 2015; 92: 1–19.

12. Adamatzky A, Chua L. Memristor Networks. Springer, New York. 2014

13. Carnevale NT, Hines ML. The NEURON Book. Cambridge University Press. 2006.

14. Marsden KC, Granato M. In vivo Ca2+ imaging reveals that decreased dendritic excitability drives startle habituation. Cell Reports. 2015; 13: 1733–1740. doi: 10.1016/j.celrep.2015.10.060 26655893

15. Korn H, Faber DS. The mauthner cell half a century later: A neurobiological model for decision-making?. Neuron. 2005; 47: 13–28. doi: 10.1016/j.neuron.2005.05.019 15996545

16. Sokolov EN. Neuronal models and the orienting influence. In: Brazier MA., editor. The central nervous system and behavior: III. Macy Foundation; New York: 1960.

17. Ramaswami M. Network plasticity in adaptive filtering and behavioral habituation. Neuron. 2014; 82: 1216–1229. doi: 10.1016/j.neuron.2014.04.035 24945768

18. Morris C, Lecar H. Voltage oscillations in the barnacle giant muscle fiber. Biophys. J. 1981; 35: 193–213. doi: 10.1016/S0006-3495(81)84782-0 7260316

19. Dayan P, Abbott LF. Theoretical neuroscience: Computational and mathematical modeling of neural systems. London; 2001.

20. Anokhin KV, Burtsev MS, Ilyin VA, et al. A review of computational models of neuronal cultures in vitro. Mat. Biolog. Bioinform. 2012; 7: 372–397. (In Russian)

21. Li R, Cao J. Stability analysis of reaction-diffusion uncertain memristive neural networks with time-varying delays and leakage term. Appl. Math. and Comp. 2016; 278: 54–69.

22. Meier SR, Lancaster JL, Starobin JM. Bursting regimes in a reaction-diffusion system with action potential-dependent equilibrium. PLoS ONE. 2015; 10: 1–25.

23. Shuman T, Amendolara B, Golshani P. Theta rhythmopathy as a cause of cognitive disability in TLE. Epilepsy Currents. 2017; 17: 107–111. doi: 10.5698/1535-7511.17.2.107 28491003

24. Buzsáki G. Theta oscillations in the hippocampus. Neuron. 2002; 33: 325–340. doi: 10.1016/s0896-6273(02)00586-x 11832222

25. Bean BP. The action potential in mammalian central neurons. Nature Reviews Neuroscience. 2007; 8: 451–465. doi: 10.1038/nrn2148 17514198

26. Firmin L, Field P, Maier MA, et al. Axon diameters and conduction velocities in the macaque pyramidal tract. J Neurophysiol. 2014; 112: 1229–1240. doi: 10.1152/jn.00720.2013 24872533

27. Neuhuber B, Himes T, Shumsky JS, et al. Axon growth and recovery of function supported by human bone marrow stromal cells in the injured spinal cord exhibit donor variations. Brain Research. 2005; 1035: 73–85. doi: 10.1016/j.brainres.2004.11.055 15713279

28. Hawkins RD, Cohen TE, Kandel ER. Dishabituation in Aplysia can involve either reversal of habituation or superimposed sensitization. Learning & Memory. 2006; 13: 397–403.

29. Antonov I, Kandel ER, Hawkins RD. The contribution of monosynaptic PSPs to dishabituation and sensitization of the Aplysia siphon withdrawal reflex. J Neuroscience. 1999; 19: 10438–10450.

30. Castellucci V, Pinsker H, Kupfermann I, Kandel ER. Neuronal mechanisms of habituation and dishabituation of the gill-withdrawal reflex in Aplysia. Science. 1970; 167: 1745–1748. doi: 10.1126/science.167.3926.1745 5416543

31. Marcus EA, Nolen TG, Rankin CH, Carew TJ. Behavioral dissociation of dishabituation, sensitization, and inhibition in Aplysia. Science. 1988; 241: 210–213. doi: 10.1126/science.3388032 3388032

32. Cohen TE, Kaplan SW, Kandel ER, Hawkins RD. A simplified preparation for relating cellular events to behavior: mechanisms contributing to habituation, dishabituation, and sensitization of the Aplysia gill-withdrawal reflex. J Neuroscience. 1997; 17: 2886–2899.

33. Rankin CH, Abrams T, Barry RJ, et al. Habituation revisited: an updated and revised description of the behavioral characteristics of habituation. Neurobiol Learn Mem. 2009; 92: 135–138. doi: 10.1016/j.nlm.2008.09.012 18854219


Článek vyšel v časopise

PLOS One


2019 Číslo 12