IL-18/IL-37/IP-10 signalling complex as a potential biomarker for discriminating active and latent TB


Autoři: Sebastian Wawrocki aff001;  Michal Seweryn aff002;  Grzegorz Kielnierowski aff003;  Wieslawa Rudnicka aff001;  Marcin Wlodarczyk aff001;  Magdalena Druszczynska aff001
Působiště autorů: Department of Immunology and Infectious Biology, Institute of Microbiology, Biotechnology and Immunology, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, Poland aff001;  Center for Medical Genomics OMICRON, Jagiellonian University, Medical College, Cracow, Poland aff002;  Regional Specialized Hospital of Tuberculosis, Lung Diseases and Rehabilitation, Szpitalna 5, Tuszyn, Poland aff003
Vyšlo v časopise: PLoS ONE 14(12)
Kategorie: Research Article
doi: 10.1371/journal.pone.0225556

Souhrn

Background

Currently, there are serious limitations in the direct diagnosis of active tuberculosis (ATB). We evaluated the levels of the IL-18/IL-37/IP-10 signalling complex proteins in Mycobacterium tuberculosis (M.tb)-specific antigen-stimulated QuantiFERON® Gold In-Tube (QFT) cultures and in serum samples from ATB patients, healthy individuals with latent M.tb infection (LTBI) and healthy controls (HC) to examine whether combined analyses of these proteins were useful in the differentiation of M.tb states.

Methods

The concentrations of IL-18, IL-18BP, IFN-γ, IL-37 and IP-10 in the serum and QFT supernatants were measured using specific enzyme-linked immunosorbent assay (ELISA) kits. Free IL-18 levels were calculated using the law of mass action.

Results

Increased concentrations of total and free IL-18, IL-18BP, IFN-γ and IP-10 in the sera of ATB patients were detected. These increases were not counterbalanced by the overproduction of IL-37. Complex co-expression of serum IL-18BP and IL-37, IP-10 and IFN-γ was identified as the highest discriminative biomarker set for the diagnosis of ATB.

Conclusions

Our results suggest that the IL-18 signalling complex might be exploited by M. tuberculosis to expand the clinical manifestations of pulmonary TB. Therefore, direct analysis of the serum components of the IL-18/IL-37 signalling complex and IP-10 may be applicable in designing novel diagnostic tests for ATB.

Klíčová slova:

Biomarkers – Bovine tuberculosis – Enzyme-linked immunoassays – Serum proteins – Tuberculosis – Tuberculosis diagnosis and management – Signaling complexes


Zdroje

1. Organization WHO. Global Tuberculosis Report 2018. 2018; Available: https://apps.who.int/iris/bitstream/handle/10665/274453/9789241565646-eng.pdf

2. Takenami I, Loureiro C, Machado A, Emodi K, Riley LW, Arruda S. Blood cells and interferon-gamma levels correlation in latent tuberculosis infection. ISRN Pulmonol. 2013;2013: 1–8. doi: 10.1155/2013/256148 24040564

3. Russell DG, Cardona P-J, Kim M-J, Allain S, Altare F. Foamy macrophages and the progression of the human tuberculosis granuloma. Nat Immunol. 2009;10: 943–948. doi: 10.1038/ni.1781 19692995

4. Wlodarczyk M, Rudnicka W, Janiszewska-Drobinska B, Kielnierowski G, Kowalewicz-Kulbat M, Fol M, et al. Interferon-gamma assay in combination with tuberculin skin test are insufficient for the diagnosis of culture-negative pulmonary tuberculosis. PLoS One. Public Library of Science; 2014;9: e107208. doi: 10.1371/journal.pone.0107208 25221998

5. Kunnath-Velayudhan S, Gennaro ML. Immunodiagnosis of tuberculosis: a dynamic view of biomarker discovery. Clin Microbiol Rev. American Society for Microbiology (ASM); 2011;24: 792–805. doi: 10.1128/CMR.00014-11 21976609

6. Weiner J, Kaufmann SHE. High-throughput and computational approaches for diagnostic and prognostic host tuberculosis biomarkers. Int J Infect Dis. 2017;56: 258–262. doi: 10.1016/j.ijid.2016.10.017 27836792

7. Awoniyi DO, Teuchert A, Sutherland JS, Mayanja-Kizza H, Howe R, Mihret A, et al. Evaluation of cytokine responses against novel Mtb antigens as diagnostic markers for TB disease. J Infect. 2016;73: 219–230. doi: 10.1016/j.jinf.2016.04.036 27311746

8. Farr K, Ravindran R, Strnad L, Chang E, Chaisson LH, Yoon C, et al. Diagnostic performance of blood inflammatory markers for tuberculosis screening in people living with HIV. Ivanyi J, editor. PLoS One. 2018;13: e0206119. doi: 10.1371/journal.pone.0206119 30352099

9. Barksby HE, Lea SR, Preshaw PM, Taylor JJ. The expanding family of interleukin-1 cytokines and their role in destructive inflammatory disorders. Clin Exp Immunol. 2007;149: 217–225. doi: 10.1111/j.1365-2249.2007.03441.x 17590166

10. Dima E, Koltsida O, Katsaounou P, Vakali S, Koutsoukou A, Koulouris NG, et al. Implication of Interleukin (IL)-18 in the pathogenesis of chronic obstructive pulmonary disease (COPD). Cytokine. 2015;74: 313–317. doi: 10.1016/j.cyto.2015.04.008 25922275

11. Schneider BE, Korbel D, Hagens K, Koch M, Raupach B, Enders J, et al. A role for IL-18 in protective immunity against Mycobacterium tuberculosis. Eur J Immunol. 2010;40: 396–405. doi: 10.1002/eji.200939583 19950174

12. Dinarello CA. IL-18: A TH1-inducing, proinflammatory cytokine and new member of the IL-1 family. J Allergy Clin Immunol. 1999;103: 11–24. Available: http://www.ncbi.nlm.nih.gov/pubmed/9893178 doi: 10.1016/s0091-6749(99)70518-x 9893178

13. Dinarello CA, Novick D, Kim S, Kaplanski G. Interleukin-18 and IL-18 Binding Protein. Front Immunol. 2013;4: 289. doi: 10.3389/fimmu.2013.00289 24115947

14. Nakanishi K, Yoshimoto T, Tsutsui H, Okamura H. Interleukin -18 regulates bothTH1 and TH2 responses. Annu Rev Immunol. 2001;19: 423–474. doi: 10.1146/annurev.immunol.19.1.423 11244043

15. Nold MF, Nold-Petry CA, Zepp JA, Palmer BE, Bufler P, Dinarello CA. IL-37 is a fundamental inhibitor of innate immunity. Nat Immunol. NIH Public Access; 2010;11: 1014–22. doi: 10.1038/ni.1944 20935647

16. Dinarello CA, Nold-Petry C, Nold M, Fujita M, Li S, Kim S, et al. Suppression of innate inflammation and immunity by interleukin-37. Eur J Immunol. 2016;46: 1067–1081. doi: 10.1002/eji.201545828 27060871

17. Banda NK, Vondracek A, Kraus D, Dinarello CA, Kim S-H, Bendele A, et al. Mechanisms of inhibition of collagen-induced arthritis by murine IL-18 binding protein. J Immunol. 2003;170: 2100–5. Available: http://www.ncbi.nlm.nih.gov/pubmed/12574381 doi: 10.4049/jimmunol.170.4.2100 12574381

18. Bufler P, Azam T, Gamboni-Robertson F, Reznikov LL, Kumar S, Dinarello CA, et al. A complex of the IL-1 homologue IL-1F7b and IL-18-binding protein reduces IL-18 activity. Proc Natl Acad Sci U S A. 2002;99: 13723–8. doi: 10.1073/pnas.212519099 12381835

19. Migliorini P, Anzilotti C, Pratesi F, Quattroni P, Bargagna M, Dinarello CA, et al. Serum and urinary levels of IL-18 and its inhibitor IL-18BP in systemic lupus erythematosus. Eur Cytokine Netw. 2010;21: 264–71. doi: 10.1684/ecn.2010.0210 21126942

20. Kim SH, Eisenstein M, Reznikov L, Fantuzzi G, Novick D, Rubinstein M, et al. Structural requirements of six naturally occurring isoforms of the IL-18 binding protein to inhibit IL-18. Proc Natl Acad Sci U S A. National Academy of Sciences; 2000;97: 1190–5. Available: http://www.ncbi.nlm.nih.gov/pubmed/10655506

21. Hartmann K, Seweryn M, Handleman SK, Rempała GA, Sadee W. Non-linear interactions between candidate genes of myocardial infarction revealed in mRNA expression profiles. BMC Genomics. 2016;17: 738. doi: 10.1186/s12864-016-3075-6 27640124

22. Morosini M, Meloni F, Marone Bianco A, Paschetto E, Uccelli M, Pozzi E, et al. The assessment of IFN-gamma and its regulatory cytokines in the plasma and bronchoalveolar lavage fluid of patients with active pulmonary tuberculosis. Int J Tuberc Lung Dis. 2003;7: 994–1000. http://www.ncbi.nlm.nih.gov/pubmed/14552571 14552571

23. Yamada G, Shijubo N, Shigehara K, Okamura H, Kurimoto M, Abe S. Increased levels of circulating interleukin-18 in patients with advanced tuberculosis. Am J Respir Crit Care Med. 2000;161: 1786–9. doi: 10.1164/ajrccm.161.6.9911054 10852745

24. Vankayalapati R, Wizel B, Weis SE, Samten B, Girard WM, Barnes PF. Production of Interleukin‐18 in human tuberculosis. J Infect Dis. 2000;182: 234–239. doi: 10.1086/315656 10882602

25. El-Masry S, Lotfy M, Nasif W, El-Kady I, Al-Badrawy M. Elevated serum level of interleukin (IL)-18, interferon (IFN)-γ and soluble fas in patients with pulmonary complications in Tuberculosis. Acta Microbiol Immunol Hung. 2007;54: 65–77. doi: 10.1556/AMicr.54.2007.1.7 17523393

26. Won E-J, Choi J-H, Cho Y-N, Jin H-M, Kee HJ, Park Y-W, et al. Biomarkers for discrimination between latent tuberculosis infection and active tuberculosis disease. J Infect. 2017;74: 281–293. doi: 10.1016/j.jinf.2016.11.010 27871809

27. Chegou NN, Sutherland JS, Malherbe S, Crampin AC, Corstjens PLAM, Geluk A, et al. Diagnostic performance of a seven-marker serum protein biosignature for the diagnosis of active TB disease in African primary healthcare clinic attendees with signs and symptoms suggestive of TB. Thorax. 2016;71: 785–794. doi: 10.1136/thoraxjnl-2015-207999 27146200

28. Joshi L, Ponnana M, Sivangala R, Chelluri LK, Nallari P, Penmetsa S, et al. Evaluation of TNF-α, IL-10 and IL-6 Cytokine Production and their correlation with genotype variants amongst tuberculosis patients and their household contacts. Subbian S, editor. PLoS One. 2015;10: e0137727. doi: 10.1371/journal.pone.0137727 26359865

29. Sun Q, Wei W, Sha W. Potential role for Mycobacterium tuberculosis specific IL-2 and IFN-γ responses in discriminating between latent infection and active disease after long-term stimulation. Cao C, editor. PLoS One. 2016;11: e0166501. doi: 10.1371/journal.pone.0166501 28033330

30. Suter-Riniker F, Berger A, Mayor D, Bittel P, Iseli P, Bodmer T. Clinical significance of interleukin-2/gamma interferon ratios in Mycobacterium tuberculosis-specific T-cell signatures. Clin Vaccine Immunol. 2011;18: 1395–6. doi: 10.1128/CVI.05013-11 21632888

31. Goyal N, Kashyap B, Kaur IR. Significance of IFN-ɤ/IL-2 ratio as a circulating diagnostic biomarker in extrapulmonary tuberculosis. Scand J Immunol. 2016;83: 338–344. doi: 10.1111/sji.12424 26946082

32. Wassie L, Demissie A, Aseffa A, Abebe M, Yamuah L, Tilahun H, et al. Ex vivo cytokine mRNA levels correlate with changing clinical status of ethiopian TB patients and their contacts over time. Ratner A, editor. PLoS One. 2008;3: e1522. doi: 10.1371/journal.pone.0001522 18231607

33. La Manna MP, Orlando V, Li Donni P, Sireci G, Di Carlo P, Cascio A, et al. Identification of plasma biomarkers for discrimination between tuberculosis infection/disease and pulmonary non tuberculosis disease. Ivanyi J, editor. PLoS One. 2018;13: e0192664. doi: 10.1371/journal.pone.0192664 29543810

34. Vanham G, Toossi Z, Hirsch CS, Wallis RS, Schwander SK, Rich EA, et al. Examining a paradox in the pathogenesis of human pulmonary tuberculosis: immune activation and suppression/anergy. Tuber Lung Dis. 1997;78: 145–58. Available: http://www.ncbi.nlm.nih.gov/pubmed/9713647 doi: 10.1016/s0962-8479(97)90021-6 9713647

35. Nie CQ, Bernard NJ, Norman MU, Amante FH, Lundie RJ, Crabb BS, et al. IP-10-mediated T cell homing promotes cerebral inflammation over splenic immunity to malaria infection. Riley EM, editor. PLoS Pathog. 2009;5: e1000369. doi: 10.1371/journal.ppat.1000369 19343215

36. Druszczynska M, Kowalewicz-Kulbat M, Maszewska A, Rudnicka K, Szpakowski P, Wawrocki S, et al. The balance between pro- and anti-inflammatory cytokines in the immune responses to BCG and DTwP vaccines. Acta Biochim Pol. 2015;62. doi: 10.18388/abp.2015_1160 26641637

37. Szpakowski P, Biet F, Locht C, Paszkiewicz M, Rudnicka W, Druszczyńska M, et al. Dendritic cell activity driven by recombinant Mycobacterium bovis BCG producing human il-18, in healthy BCG vaccinated adults. J Immunol Res. Hindawi Limited; 2015;2015: 359153. doi: 10.1155/2015/359153 26339658

38. Chegou NN, Black GF, Loxton AG, Stanley K, Essone PN, Klein MR, et al. Potential of novel Mycobacterium tuberculosis infection phase-dependent antigens in the diagnosis of TB disease in a high burden setting. BMC Infect Dis. BioMed Central; 2012;12: 10. doi: 10.1186/1471-2334-12-10 22260319

39. Braian C, Svensson M, Brighenti S, Lerm M, Parasa VR. A 3D human lung tissue model for functional studies on Mycobacterium tuberculosis infection; Infection. J Vis Exp. 2015; doi: 10.3791/53084 26485646


Článek vyšel v časopise

PLOS One


2019 Číslo 12