A low-loss and compact single-layer butler matrix for a 5G base station antenna


Autoři: Intan Izafina Idrus aff001;  Tarik Abdul Latef aff001;  Narendra Kumar Aridas aff001;  Mohamad Sofian Abu Talip aff001;  Yoshihide Yamada aff002;  Tharek Abd Rahman aff003;  Ismahayati Adam aff004;  Mohd Najib Mohd Yasin aff005
Působiště autorů: Department of Electrical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur, Malaysia aff001;  Department of Electronic Systems Engineering, Malaysia-Japan International Institute of Technology, Universiti Teknologi Malaysia, Kuala Lumpur, Malaysia aff002;  Wireless Communication Centre, Universiti Teknologi Malaysia, Johor Bharu, Johor, Malaysia aff003;  School of Computer and Communication Engineering, Universiti Malaysia Perlis, Arau, Perlis, Malaysia aff004;  School of Microelectronic Engineering, Universiti Malaysia Perlis, Arau, Perlis, Malaysia aff005
Vyšlo v časopise: PLoS ONE 14(12)
Kategorie: Research Article
doi: 10.1371/journal.pone.0226499

Souhrn

Researchers are increasingly showing interest in the application of a Butler matrix for fifth-generation (5G) base station antennas. However, the design of the Butler matrix is challenging at millimeter wave because of the very small wavelength. The literature has reported issues of high insertion losses and incorrect output phases at the output ports of the Butler matrix, which affects the radiation characteristics. To overcome these issues, the circuit elements of the Butler matrix such as the crossover, the quadrature hybrid and the phase shifter must be designed using highly accurate dimensions. This paper presents a low-loss and compact single-layer 8 × 8 Butler matrix operating at 28 GHz. The optimum design of each circuit element is also demonstrated in detail. The designed Butler matrix was fabricated to validate the simulated results. The measured results showed return losses of less than −10 dB at 28 GHz. The proposed Butler matrix achieved a low insertion loss and a low phase error of ± 2 dB and ± 10°, respectively. In sum, this work obtained a good agreement between the simulated and measured results.

Klíčová slova:

Antennas – Electromagnetics – Employment – Optical lenses – Research design – Software design – Telecommunications – Computerized simulations


Zdroje

1. Wang C, Haider F, Gao X, You X, Yang Y, Yuan D, et al. Cellular architecture and key technologies for 5G wireless communication networks. IEEE Communications Magazine. 2014;52(2):122–30. doi: 10.1109/MCOM.2014.6736752

2. Alnoman A, Anpalagan A. Towards the fulfillment of 5G network requirements: technologies and challenges. Telecommunication Systems. 2017;65(1):101–16. doi: 10.1007/s11235-016-0216-9

3. Gavrilovska L, Rakovic V, Atanasovski V. Visions towards 5G: Technical requirements and potential enablers. Wireless Personal Communications. 2016;87(3):731–57. doi: 10.1007/s11277-015-2632-7

4. Rappaport TS, Sun S, Mayzus R, Zhao H, Azar Y, Wang K, et al. Millimeter wave mobile communications for 5G Cellular: It will work! IEEE Access. 2013;1:335–49. doi: 10.1109/ACCESS.2013.2260813

5. Hong W, Jiang ZH, Yu C, Zhou J, Chen P, Yu Z, et al. Multibeam antenna technologies for 5G wireless communications. IEEE Transactions on Antennas and Propagation. 2017;65(12):6231–49. doi: 10.1109/TAP.2017.2712819

6. Wu Z, Wu B, Su Z, Zhang X, editors. Development challenges for 5G base station antennas. 2018 International Workshop on Antenna Technology (iWAT); 2018 5–7 March 2018.

7. Kim JS, Shin JS, Oh S-M, Park A-S, Chung MY. System coverage and capacity analysis on millimeter-wave band for 5G mobile communication systems with massive antenna structure. International Journal of Antennas and Propagation. 2014;2014:11. doi: 10.1155/2014/139063

8. Yang P, Liu D, Zhang Y. Performance analysis of joint base-station multiantenna multibeam and channel assignment scheme for hierarchical cellular system. International Journal of Antennas and Propagation. 2014;2014:9. doi: 10.1155/2014/216890

9. Butler JL. Multiple beam antennas. Internal Memo RF-3849, Sanders Associates Nashua, N.H; 1960.

10. Blass J, editor Multidirectional antenna—A new approach to stacked beams. 1958 IRE International Convention Record; 1960 21–25 March 1966.

11. Rotman W, Turner R. Wide-angle microwave lens for line source applications. IEEE Transactions on Antennas and Propagation. 1963;11(6):623–32. doi: 10.1109/TAP.1963.1138114

12. Adamidis GA, Vardiambasis IO, Ioannidou MP, Kapetanakis TN. Design and implementation of single-layer 4 × 4 and 8 × 8 Butler matrices for multibeam antenna arrays. International Journal of Antennas and Propagation. 2019;2019:12. doi: 10.1155/2019/1645281

13. Babale SA, Rahim SKA, Barro OA, Himdi M, Khalily M. Single layered 4 × 4 Butler matrix without phase shifters and crossovers. IEEE Access. 2018;6:77289–98. doi: 10.1109/ACCESS.2018.2881605

14. Ben Kilani M, Nedil M, Kandil N, Denidni T. Novel wideband multilayer Butler matrix using CB-CPW technology2012. 1–16 p.

15. Tian G, Yang J, Wu W. A novel compact Butler matrix without phase shifter. IEEE Microwave and Wireless Components Letters. 2014;24(5):306–8. doi: 10.1109/LMWC.2014.2306898

16. Trinh-Van S, Lee JM, Yang Y, Lee K, Hwang KC. A sidelobe-reduced, four-beam array antenna fed by a modified 4 × 4 Butler matrix for 5G applications. IEEE Transactions on Antennas and Propagation. 2019;67(7):4528–36. doi: 10.1109/TAP.2019.2905783

17. Yang Q, Ban Y, Kang K, Sim C, Wu G. SIW multibeam array for 5G mobile devices. IEEE Access. 2016;4:2788–96. doi: 10.1109/ACCESS.2016.2578458

18. Chen C, Chu T. Design of a 60-GHz substrate integrated waveguide Butler matrix—A systematic approach. IEEE Transactions on Microwave Theory and Techniques. 2010;58(7):1724–33. doi: 10.1109/TMTT.2010.2050097

19. Moubadir M, Bayjja M, Touhami NA, Aghoutane M, Tazon A. Design and implementation of a technology planar 8 × 8 Butler matrix with square truncated edge-fed array antenna for WLAN networks application. 2015 International Conference on Wireless Networks and Mobile Communications (WINCOM); 2015 20–23 Oct. 2015.

20. Zhai Y, Fang X, Ding K, He F. Miniaturization design for 8 × 8 Butler matrix based on back-to-back bilayer microstrip. International Journal of Antennas and Propagation. 2014;2014:7. doi: 10.1155/2014/583903

21. Zhong LH, Ban YL, Lian JW, Yang QL, Guo J, Yu ZF. Miniaturized SIW multibeam antenna array fed by dual-layer 8 × 8 Butler matrix. IEEE Antennas and Wireless Propagation Letters. 2017;16:3018–21. doi: 10.1109/LAWP.2017.2758373

22. Moody H. The systematic design of the Butler matrix. IEEE Transactions on Antennas and Propagation. 1964;12(6):786–8. doi: 10.1109/TAP.1964.1138319


Článek vyšel v časopise

PLOS One


2019 Číslo 12