Knee joint biomechanics in transtibial amputees in gait, cycling, and elliptical training


Autoři: Greg Orekhov aff001;  A. Matt Robinson aff002;  Scott J. Hazelwood aff001;  Stephen M. Klisch aff001
Působiště autorů: Mechanical Engineering Department, California Polytechnic State University, San Luis Obispo, CA, United States of America aff001;  Hanger Clinic, San Luis Obispo, CA, United States of America aff002;  Biomedical Engineering Department, California Polytechnic State University, San Luis Obispo, CA, United States of America aff003
Vyšlo v časopise: PLoS ONE 14(12)
Kategorie: Research Article
doi: 10.1371/journal.pone.0226060

Souhrn

Transtibial amputees may experience decreased quality of life due to increased risk of knee joint osteoarthritis (OA). No prior studies have compared knee joint biomechanics for the same group of transtibial amputees in gait, cycling, and elliptical training. Thus, the goal of this study was to identify preferred exercises for transtibial amputees in the context of reducing risk of knee OA. The hypotheses were: 1) knee biomechanics would differ due to participant status (amputee, control), exercise, and leg type (intact, residual) and 2) gait kinematic parameters would differ due to participant status and leg type. Ten unilateral transtibial amputee and ten control participants performed exercises while kinematic and kinetic data were collected. Two-factor repeated measures analysis of variance with post-hoc Tukey tests and non-parametric equivalents were performed to determine significance. Maximum knee compressive force, extension torque, and abduction torque were lowest in cycling and highest in gait regardless of participant type. Amputee maximum knee extension torque was higher in the intact vs. residual knee in gait. Amputee maximum knee flexion angle was higher in the residual vs. intact knee in gait and elliptical. Gait midstance knee flexion angle timing was asymmetrical for amputees and knee angle was lower in the amputee residual vs. control non-dominant knees. The results suggest that cycling, and likely other non-weight bearing exercises, may be preferred exercises for amputees due to significant reductions in biomechanical asymmetries and joint loads.

Klíčová slova:

Exercise – Gait analysis – Kinematics – Knee joints – Knees – Legs – Prosthetics – Torque


Zdroje

1. Norvell DC, Czerniecki JM, Reiber GE, Maynard C, Pecoraro JA, Weiss NS. The prevalence of knee pain and symptomatic knee osteoarthritis among veteran traumatic amputees and nonamputees. Arch Phys Med Rehabil. 2005; 86(3): 487–93. doi: 10.1016/j.apmr.2004.04.034 15759233

2. Andriacchi TP, Mündermann A. The role of ambulatory mechanics in the initiation and progression of knee osteoarthritis. Curr Opin Rheumatol. 2006; 18(5): 514–8. doi: 10.1097/01.bor.0000240365.16842.4e 16896293

3. Browning RC, Kram R. Effects of obesity on the biomechanics of walking at different speeds. Med Sci Sports Exerc. 2007; 39(9): 1632–41. doi: 10.1249/mss.0b013e318076b54b 17805097

4. Messier SP. Osteoarthritis of the knee and associated factors of age and obesity: effects on gait. Msse. 1994; 26(12): 1446–52.

5. Sharma L, Lou C, Cahue S, Dunlop DD. The mechanism of the effect of obesity in knee osteoarthritis: The mediating role of malalignment. Arthritis Rheum. 2000; 43(3): 568–75. doi: 10.1002/1529-0131(200003)43:3<568::AID-ANR13>3.0.CO;2-E 10728750

6. Ebrahimzadeh MH, Hariri S. Long-term outcomes of unilateral transtibial amputations. Mil Med. 2009; 174(6): 593–7. doi: 10.7205/milmed-d-02-8907 19585771

7. Reiber GE, Mcfarland L V., Hubbard S, Maynard C, Blough DK, Gambel JM, et al. Servicemembers and veterans with major traumatic limb loss from vietnam war and OIF/OEF conflicts: Survey methods, participants, and summary findings. J Rehabil Res Dev. 2010; 47(4): 275–97. doi: 10.1682/jrrd.2010.01.0009 20803399

8. Childers WL, Kistenberg RS, Gregor RJ. The biomechanics of cycling with a transtibial amputation: Recommendations for prosthetic design and direction for future research. Prosthet Orthot Int. 2009; 33(3): 256–71. doi: 10.1080/03093640903067234 19658015

9. Robbins CB, Vreeman DJ, Sothmann MS, Wilson SL, Oldridge NB. A review of the long-term health outcomes associated with war-related amputation. Mil Med. 2009; 174(6): 588–92. doi: 10.7205/milmed-d-00-0608 19585770

10. Struyf PA, van Heugten CM, Hitters MW, Smeets RJ. The prevalence of osteoarthritis of the intact hip and knee among traumatic leg amputees. Arch Phys Med Rehabil. 2009; 90(3): 440–6. doi: 10.1016/j.apmr.2008.08.220 19254609

11. Melzer I, Yekutiel M, Sukenik S. Comparative study of osteoarthritis of the contralateral knee joint of male amputees who do and do not play volleyball. J Rheumatol. 2001; 28(1): 169–72. 11196520

12. Hungerford DS, Cockin J. Fate of retained lower limb joints in second world war amputee. J Bone Jt Surg. 1975; 57B(B1): 111.

13. Isakov E, Burger H, Krajnik J, Gregoric M, Marincek C. Knee muscle activity during ambulation of trans-tibial amputees. J Rehabil Med. 2001; 33(5): 196–9. doi: 10.1080/165019701750419572 11585149

14. Nolan L, Lees A. The functional demands on the intact limb during walking for active trans-femoral and trans-tibial amputees. Prosthet Orthot Int. 2000; 24(2): 117–25. doi: 10.1080/03093640008726534 11061198

15. Pinzur MS, Asselmeier M, Smith D. Dynamic electromyography in active and limited walking below-knee amputees. Orthopedics. 1991; 14(5): 535–8. 2062730

16. Powers CM, Rao S, Perry J. Knee kinetics in trans-tibial amputee gait. Gait Posture. 1998; 8(1): 1–7. doi: 10.1016/s0966-6362(98)00016-2 10200393

17. Sanderson DJ, Martin PE. Lower extremity kinematic and kinetic adaptations in unilateral below-knee amputees during walking. Gait Posture. 1997; 6(2): 126–36.

18. Silverman AK, Fey NP, Portillo A, Walden JG, Bosker G, Neptune RR. Compensatory mechanisms in below-knee amputee gait in response to increasing steady-state walking speeds. Gait Posture. 2008; 28(4): 602–9. doi: 10.1016/j.gaitpost.2008.04.005 18514526

19. Snyder RD, Powers CM, Fontaine C, Perry J. The effect of five prosthetic feet on the gait and loading of the sound limb in dysvascular below-knee amputees. J Rehabil Res Dev. 1995; 32(4): 309–15. 8770795

20. Underwood HA, Tokuno CD, Eng JJ. A comparison of two prosthetic feet on the multi-joint and multi-plane kinetic gait compensations in individuals with a unilateral trans-tibial amputation. Clin Biomech. 2004; 19(6): 609–16.

21. Winter DA, Sienko SE. Biomechanics of below-knee amputee gait. J Biomech. 1988; 21(5): 361–7. doi: 10.1016/0021-9290(88)90142-x 3417688

22. Lemaire ED, Fisher FR. Osteoarthritis and elderly amputee gait. Arch Phys Med Rehabil. 1994; 75(10): 1094–9. doi: 10.1016/0003-9993(94)90084-1 7944914

23. Royer TD, Wasilewski CA. Hip and knee frontal plane moments in persons with unilateral, trans-tibial amputation. Gait Posture. 2006; 23(3): 303–6. doi: 10.1016/j.gaitpost.2005.04.003 15919207

24. Royer T, Koenig M. Joint loading and bone mineral density in persons with unilateral, trans-tibial amputation. Clin Biomech. 2005; 20(10): 1119–25.

25. Wise BL, Niu J, Yang M, Lane NE, Harvey W, Felson DT, et al. Patterns of compartment involvement in tibiofemoral osteoarthritis in men and women and in whites and African Americans. Arthritis Care Res. 2012; 64(6): 847–52.

26. Chang AH, Moisio KC, Chmiel JS, Eckstein F, Guermazi A, Prasad P V., et al. External knee adduction and flexion moments during gait and medial tibiofemoral disease progression in knee osteoarthritis. Osteoarthr Cartil. 2015; 23(7): 1099–106. doi: 10.1016/j.joca.2015.02.005 25677110

27. Walter JP, D’Lima DD, Colwell CW, Fregly BJ. Decreased knee adduction moment does not guarantee decreased medial contact force during gait. J Orthop Res. 2010; 28(10): 1348–54. doi: 10.1002/jor.21142 20839320

28. Grimm M, Guenard C, Mesple-Somps S. Energy storage and return prostheses: Does patient perception correlate with biomechanical analysis? Clin Biomech. 2002; 17(5): 325–44.

29. Ventura JD, Klute GK, Neptune RR. The effect of prosthetic ankle energy storage and return properties on muscle activity in below-knee amputee walking. Gait Posture. 2011; 33(2): 220–6. doi: 10.1016/j.gaitpost.2010.11.009 21145747

30. Versluys R, Beyl P, Van Damme M, Desomer A, Van Ham R, Lefeber D. Prosthetic feet: State-of-the-art review and the importance of mimicking human anklefoot biomechanics. Disabil Rehabil Assist Technol. 2009; 4(2): 65–75. doi: 10.1080/17483100802715092 19253096

31. Grabowski AM, D’Andrea S. Effects of a powered ankle-foot prosthesis on kinetic loading of the unaffected leg during level-ground walking. J Neuroeng Rehabil. 2013; 10(1): 49.

32. Herr HM, Grabowski AM. Bionic ankle-foot prosthesis normalizes walking gait for persons with leg amputation. Proc R Soc B Biol Sci. 2012; 279(1728): 457–64.

33. Au SK, Weber J, Herr H. Powered ankle-foot prosthesis improves walking metabolic economy. IEEE Trans Robot. 2009; 25(1): 51–66.

34. Hill D, Herr H. Effects of a powered ankle-foot prosthesis on kinetic loading of the contralateral limb: A case series. In: IEEE International Conference on Rehabilitation Robotics. 2013.

35. Russell Esposito E, Wilken JM. Biomechanical risk factors for knee osteoarthritis when using passive and powered ankle-foot prostheses. Clin Biomech. 2014; 29(10): 1186–92.

36. Yang DY. Rehabilitation after amputation. Chinese J Clin Rehabil. 2002; 6(24): 3638–9.

37. Gailey R, Harsch P. Introduction to triathlon for the lower limb amputee triathlete. Prosthet Orthot Int. 2009; 33(3): 242–55. doi: 10.1080/03093640902995070 19658014

38. Childers WL, Kistenberg RS, Gregor RJ. Pedaling asymmetries in cyclists with unilateral transtibial amputation: Effect of prosthetic foot stiffness. J Appl Biomech. 2011; 27(4): 314–21. doi: 10.1123/jab.27.4.314 21896953

39. Gailey RS, Springer BA, Scherer M. Physical Therapy for the Polytrauma Casualty With Limb Loss. Care Combat Amputee. 2009; 451–92.

40. D’Lima DD, Steklov N, Patil S, Colwell CW. The Mark Coventry award: In vivo knee forces during recreation and exercise after knee arthroplasty. Clin Orthop Relat Res. 2008; 466(11): 2605–11. doi: 10.1007/s11999-008-0345-x 18563502

41. Rogatzki MJ, Kernozek TW, Willson JD, Greany JF, Hong D-A, Porcari JP. Peak muscle activation, joint kinematics, and kinetics during elliptical and stepping movement pattern on a precor adaptive motion trainer. Res Q Exerc Sport. 2012; 83(2): 152–9. doi: 10.1080/02701367.2012.10599845 22808700

42. Lu TW, Chien HL, Chen HL. Joint loading in the lower extremities during elliptical exercise. Med Sci Sports Exerc. 2007; 39(9): 1651–8. doi: 10.1249/mss.0b013e3180dc9970 17805099

43. Sinusas K. Osteoarthritis: diagnosis and treatment. Am Fam Physician. 2012; 85(1): 49–56. 22230308

44. Kwon Y-H. Theories and practices of motion analysis: multiple plates [Internet]. 1998 [cited 2018 Nov 26]. Available from: http://www.kwon3d.com/theory/grf/multi.html

45. Besser M, Kowalk D, Vaughan C. Mounting and calibration of stairs on piezoelectric force platforms. Gait Posture. 1993; 1(4): 231–5.

46. Yu B, Gabriel D, Noble L, An KN. Estimate of the optimum cutoff frequency for the Butterworth low-pass digital filter. J Appl Biomech. 1999; 15(3): 318–29.

47. De Leva P. Adjustments to Zatsiorsky-Seluyanov’s segment inertia parameters. J Biomech. 1996; 29(9): 1223–30. doi: 10.1016/0021-9290(95)00178-6 8872282

48. Motion Analysis Corporation. Appendix B. In: KinTools RT User’s Manual. 2013. p. B1–3.

49. Wu G, Cavanagh PR. ISB recommendations for standardization in the reporting of kinematic data. J Biomech. 1995; 28(10): 1257–61. doi: 10.1016/0021-9290(95)00017-c 8550644

50. Lerner ZF, Haight DJ, DeMers MS, Board WJ, Browning RC. The effects of walking speed on tibiofemoral loading estimated via musculoskeletal modeling. J Appl Biomech. 2014; 30(2): 197–205. doi: 10.1123/jab.2012-0206 23878264

51. Leardini A, Sawacha Z, Paolini G, Ingrosso S, Nativo R, Benedetti MG. A new anatomically based protocol for gait analysis in children. Gait Posture. 2007; 26(4): 560–71. doi: 10.1016/j.gaitpost.2006.12.018 17291764

52. Moisio KC, Sumner DR, Shott S, Hurwitz DE. Normalization of joint moments during gait: A comparison of two techniques. J Biomech. 2003; 36(4): 599–603. doi: 10.1016/s0021-9290(02)00433-5 12600350

53. R Core Team. R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing; 2018.

54. Fey NP, Neptune RR. 3D intersegmental knee loading in below-knee amputees across steady-state walking speeds. Clin Biomech. 2012; 27(4): 409–14.

55. Ruby P, Hull ML, Hawkins D. Three-dimensional knee joint loading during seated cycling. J Biomech. 1992; 25(1): 41–53. doi: 10.1016/0021-9290(92)90244-u 1733983

56. Davis RR, Hull ML. Measurement of pedal loading in bicycling: II. Analysis and results. J Biomech. 1981; 14(12).

57. Knutzen K M., McLaughlin W L., Lawson A J., Row B S., Tyson Martin L. Influence of Ramp Position on Joint Biomechanics During Elliptical Trainer Exercise. Open Sports Sci J. 2014; 3(1): 165–77.

58. Andriacchi TP, Mündermann A, Smith RL, Alexander EJ, Dyrby CO, Koo S. A framework for the in vivo pathomechanics of osteoarthritis at the knee. Ann Biomed Eng. 2004; 32(3): 447–57. doi: 10.1023/b:abme.0000017541.82498.37 15095819

59. Berchuck M, Andriacchi TP, Bach BR, Reider B. Gait adaptations by patients who have a deficient anterior cruciate ligament. J Bone Jt Surg—Ser A. 1990; 72(6): 871–7.

60. Lloyd CH, Stanhope SJ, Davis IS, Royer TD. Strength asymmetry and osteoarthritis risk factors in unilateral trans-tibial, amputee gait. Gait Posture. 2010; 32(3): 296–300. doi: 10.1016/j.gaitpost.2010.05.003 20678938

61. Sharma L, Hurwitz DE, Thonar EJMA, Sum JA, Lenz ME, Dunlop DD, et al. Knee adduction moment, serum hyaluronan level, and disease severity in medial tibiofemoral osteoarthritis. Arthritis Rheum. 1998; 41(7): 1233–40. doi: 10.1002/1529-0131(199807)41:7<1233::AID-ART14>3.0.CO;2-L 9663481

62. Shelburne KB, Torry MR, Pandy MG. Contributions of muscles, ligaments, and the ground-reaction force to tibiofemoral joint loading during normal gait. J Orthop Res. 2006; 24(10): 1983–90. doi: 10.1002/jor.20255 16900540

63. Miyazaki T, Wada M, Kawahara H, Sato M, Baba H, Shimada S. Dynamic load at baseline can predict radiographic disease progression in medial compartment knee osteoarthritis. Ann Rheum Dis. 2002; 61(7): 617–22. doi: 10.1136/ard.61.7.617 12079903

64. Chehab EF, Favre J, Erhart-Hledik JC, Andriacchi TP. Baseline knee adduction and flexion moments during walking are both associated with 5year cartilage changes in patients with medial knee osteoarthritis. Osteoarthr Cartil. 2014; 22(11): 1833–9. doi: 10.1016/j.joca.2014.08.009 25211281

65. Foroughi N, Smith R, Vanwanseele B. The association of external knee adduction moment with biomechanical variables in osteoarthritis: A systematic review. Knee. 2009; 16(5): 303–9. doi: 10.1016/j.knee.2008.12.007 19321348

66. Leardini A, Chiari A, Della Croce U, Cappozzo A. Human movement analysis using stereophotogrammetry Part 3. Soft tissue artifact assessment and compensation. Gait Posture. 2005; 21(2): 212–25. doi: 10.1016/j.gaitpost.2004.05.002 15639400

67. Stagni R, Fantozzi S, Cappello A, Leardini A. Quantification of soft tissue artefact in motion analysis by combining 3D fluoroscopy and stereophotogrammetry: A study on two subjects. Clin Biomech. 2005; 20(3): 320–9.

68. Piazza SJ, Cavanagh PR. Measurement of the screw-home motion of the knee is sensitive to errors in axis alignment. J Biomech. 2000; 33(8): 1029–34. doi: 10.1016/s0021-9290(00)00056-7 10828334


Článek vyšel v časopise

PLOS One


2019 Číslo 12