PyLandStats: An open-source Pythonic library to compute landscape metrics

Autoři: Martí Bosch aff001
Působiště autorů: Urban and Regional Planning Community (CEAT), École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland aff001
Vyšlo v časopise: PLoS ONE 14(12)
Kategorie: Research Article


Quantifying the spatial pattern of landscapes has become a common task of many studies in landscape ecology. Most of the existing software to compute landscape metrics is not well suited to be used in interactive environments such as Jupyter notebooks nor to be included as part of automated computational workflows. This article presents PyLandStats, an open-source Pythonic library to compute landscape metrics within the scientific Python stack. The PyLandStats package provides a set of methods to quantify landscape patterns, such as the analysis of the spatiotemporal patterns of land use/land cover change or zonal analysis. The implementation is based on the prevailing Python libraries for geospatial data analysis in a way that they can be forthwith integrated into complex computational workflows. Notably, the provided methods offer a large variety of options so that users can employ PyLandStats in the way that best supports their needs. The source code is publicly available, and is organized in a modular object-oriented structure that enhances its maintainability and extensibility.

Klíčová slova:

Computing methods – Ecosystems – Fractals – Open source software – Programming languages – Software tools – Theoretical ecology – Spatial and landscape ecology


1. Turner MG. Landscape ecology: the effect of pattern on process. Annual review of ecology and systematics. 1989;20(1):171–197. doi: 10.1146/

2. Pickett ST, Cadenasso ML. Landscape ecology: spatial heterogeneity in ecological systems. Science. 1995;269(5222):331–334. doi: 10.1126/science.269.5222.331 17841249

3. O’Neill R, Krummel J, Gardner R, Sugihara G, Jackson B, DeAngelis D, et al. Indices of landscape pattern. Landscape ecology. 1988;1(3):153–162. doi: 10.1007/BF00162741

4. Turner MG. Spatial and temporal analysis of landscape patterns. Landscape ecology. 1990;4(1):21–30. doi: 10.1007/BF02573948

5. McGarigal K, Cushman SA, Ene E. FRAGSTATS v4: spatial pattern analysis program for categorical and continuous maps; 2012. Computer software program produced by the authors at the University of Massachusetts, Amherst. Available at:

6. Steiniger S, Hay GJ. Free and open source geographic information tools for landscape ecology. Ecological informatics. 2009;4(4):183–195. doi: 10.1016/j.ecoinf.2009.07.004

7. Heymann Y, Steenmans C, Croisille G, Bossard M. CORINE land cover: Technical guide; 1994.

8. Van Der Walt S, Colbert SC, Varoquaux G. The NumPy array: a structure for efficient numerical computation. Computing in Science & Engineering. 2011;13(2):22. doi: 10.1109/MCSE.2011.37

9. Hunter JD. Matplotlib: A 2D graphics environment. Computing in science & engineering. 2007;9(3):90. doi: 10.1109/MCSE.2007.55

10. McKinney W. Data structures for statistical computing in python. In: van der Walt S, Millman J, editors. Proceedings of the 9th Python in Science Conference. vol. 445. Austin, TX; 2010. p. 51–56.

11. Riitters KH, O’Neill R, Hunsaker C, Wickham JD, Yankee D, Timmins S, et al. A factor analysis of landscape pattern and structure metrics. Landscape ecology. 1995;10(1):23–39. doi: 10.1007/BF00158551

12. Meentemeyer V, Box EO. Scale effects in landscape studies. In: Landscape heterogeneity and disturbance. Springer; 1987. p. 15–34.

13. Saura S, Martinez-Millan J. Sensitivity of landscape pattern metrics to map spatial extent. Photogrammetric engineering and remote sensing. 2001;67(9):1027–1036.

14. Wu J, Jelinski DE, Luck M, Tueller PT. Multiscale analysis of landscape heterogeneity: scale variance and pattern metrics. Geographic information sciences. 2000;6(1):6–19.

15. McDonnell MJ, Pickett ST. Ecosystem structure and function along urban-rural gradients: an unexploited opportunity for ecology. Ecology. 1990;71(4):1232–1237.

16. Wu J, Shen W, Sun W, Tueller PT. Empirical patterns of the effects of changing scale on landscape metrics. Landscape Ecology. 2002;17(8):761–782. doi: 10.1023/A:1022995922992

17. Wu J. Effects of changing scale on landscape pattern analysis: scaling relations. Landscape ecology. 2004;19(2):125–138. doi: 10.1023/

18. Matthias Bussonnier, Jessica Forde, Jeremy Freeman, Brian Granger, Tim Head, Chris Holdgraf, et al. Binder 2.0—Reproducible, interactive, sharable environments for science at scale. In: Proceedings of the 17th Python in Science Conference; 2018. p. 113–120.

19. Bosch M, Chenal J. Spatiotemporal patterns of urbanization in three Swiss urban agglomerations: insights from landscape metrics, growth modes and fractal analysis. bioRxiv. 2019; p. 645549.

20. Guelton S, Brunet P, Amini M, Merlini A, Corbillon X, Raynaud A. Pythran: Enabling static optimization of scientific python programs. Computational Science & Discovery. 2015;8(1):014001. doi: 10.1088/1749-4680/8/1/014001

21. Behnel S, Bradshaw R, Citro C, Dalcin L, Seljebotn DS, Smith K. Cython: The best of both worlds. Computing in Science & Engineering. 2011;13(2):31. doi: 10.1109/MCSE.2010.118

22. McGarigal K, Marks BJ. FRAGSTATS: spatial pattern analysis program for quantifying landscape structure. Gen Tech Rep PNW-GTR-351 Portland, OR: US Department of Agriculture, Forest Service, Pacific Northwest Research Station 122 p. 1995;351.

23. Hesselbarth MH, Sciaini M, With KA, Wiegand K, Nowosad J. landscapemetrics: an open-source R tool to calculate landscape metrics. Ecography. 2019.

24. Jung M. LecoS—A python plugin for automated landscape ecology analysis. Ecological informatics. 2016;31:18–21. doi: 10.1016/j.ecoinf.2015.11.006

25. Kluyver T, Ragan-Kelley B, Pérez F, Granger BE, Bussonnier M, Frederic J, et al. Jupyter Notebooks-a publishing format for reproducible computational workflows. In: Positioning and Power in Academic Publishing: Players, Agents and Agendas. IOS Press; 2016. p. 87–90.

Článek vyšel v časopise


2019 Číslo 12
Nejčtenější tento týden