Heterotrimeric G-alpha subunits Gpa11 and Gpa12 define a transduction pathway that control spore size and virulence in Mucor circinelloides


Autoři: J. Alberto Patiño-Medina aff001;  Nancy Y. Reyes-Mares aff001;  Marco I. Valle-Maldonado aff001;  Irvin E. Jácome-Galarza aff002;  Carlos Pérez-Arques aff003;  Rosa E. Nuñez-Anita aff004;  Jesús Campos-García aff001;  Verónica Anaya-Martínez aff005;  Rafael Ortiz-Alvarado aff006;  Martha I. Ramírez-Díaz aff001;  Soo Chan Lee aff007;  Victoriano Garre aff003;  Víctor Meza-Carmen aff001
Působiště autorů: Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo (UMSNH), Morelia, Michoacán, México aff001;  Departamento de Biología Molecular, Laboratorio Estatal de Salud Pública del Estado de Michoacán, Morelia, Michoacán, México aff002;  Departamento de Genética y Microbiología, Facultad de Biología, Universidad de Murcia, Murcia, España aff003;  Facultad de Medicina Veterinaria y Zootecnia, Universidad Michoacana de San Nicolás Hidalgo, Morelia, Michoacán, Mexico aff004;  Facultad de Ciencias de la Salud, Universidad Anáhuac, Naucalpan de Juarez, Estado de México, México aff005;  Facultad de Químico Farmacobiología, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Michoacan, México aff006;  Department of Biology, South Texas Center of Emerging Infectious Diseases (STCEID), University of Texas at San Antonio, San Antonio, Texas, United States of America aff007
Vyšlo v časopise: PLoS ONE 14(12)
Kategorie: Research Article
doi: 10.1371/journal.pone.0226682

Souhrn

Mucor circinelloides is one of the causal agents of mucormycosis, an emerging and high mortality rate fungal infection produced by asexual spores (sporangiospores) of fungi that belong to the order Mucorales. M. circinelloides has served as a model genetic system to understand the virulence mechanism of this infection. Although the G-protein signaling cascade plays crucial roles in virulence in many pathogenic fungi, its roles in Mucorales are yet to be elucidated. Previous study found that sporangiospore size and calcineurin are related to the virulence in Mucor, in which larger spores are more virulent in an animal mucormycosis model and loss of a calcineurin A catalytic subunit CnaA results in larger spore production and virulent phenotype. The M. circinelloides genome is known to harbor twelve gpa (gpa1 to gpa12) encoding G-protein alpha subunits and the transcripts of the gpa11 and gpa12 comprise nearly 72% of all twelve gpa genes transcript in spores. In this study we demonstrated that loss of function of Gpa11 and Gpa12 led to larger spore size associated with reduced activation of the calcineurin pathway. Interestingly, we found lower levels of the cnaA mRNAs in sporangiospores from the Δgpa12 and double Δgpa11gpa12 mutant strains compared to wild-type and the ΔcnaA mutant had significantly lower gpa11 and gpa12 mRNA levels compared to wild-type. However, in contrast to the high virulence showed by the large spores of ΔcnaA, the spores from Δgpa11gpa12 were avirulent and produced lower tissue invasion and cellular damage, suggesting that the gpa11 and gpa12 define a signal pathway with two branches. One of the branches controls spore size through regulation of calcineurin pathway, whereas virulences is controlled by an independent pathway. This virulence-related regulatory pathway could control the expression of genes involved in cellular responses important for virulence, since sporangiospores of Δgpa11gpa12 were less resistant to oxidative stress and phagocytosis by macrophages than the ΔcnaA and wild-type strains. The characterization of this pathway could contribute to decipher the signals and mechanism used by Mucorales to produce mucormycosis.

Klíčová slova:

Fungal genetics – Fungal spores – Gene expression – Macrophages – Mutant strains – Oligonucleotides – Polymerase chain reaction – Fungal spore germination


Zdroje

1. Wijayawardene NN, Pawłowska J, Letcher PM, Kirk PM, Humber RA, Schüßler A et al. Notes for genera: basal clades of fungi (including Aphelidiomycota, Basidiobolomycota, Blastocladiomycota, Calcarisporiellomycota, Caulochytriomycota, Chytridiomycota, Entomophthoromycota, Glomeromycota, Kickxellomycota, Monoblepharomycota, Mortierellomycota, Mucoromycota, Neocallimastigomycota, Olpidiomycota, Rozellomycota and Zoopagomycota). Fungal Divers. 2018; 92: 43–129. https://doi.org/10.1007/s13225-018-0409-5.

2. Orlowski M. Mucor dimorphism. Microbiol Rev. 1991; 55(2): 234–58. 1886520

3. Morin-Sardin S, Nodet P, Coton E, Jany JL. A Janus-faced fungal genus with human health impact and industrial applications. Fungal Biol Rev. 2017; 31(1):12–32. https://doi.org/10.1016/j.fbr.2016.11.002.

4. McIntyre M, Breum J, Arnau J, Nielsen J. Growth physiology and dimorphism of Mucor circinelloides (syn. racemosus) during submerged batch cultivation. Appl Microbiol Biotechnol. 2002; 58:495–502. https://doi.org/10.1007/s00253-001-0916-1 11954797

5. Lübbehüsen TL, Nielsen J, McIntyre M. Characterization of the Mucor circinelloides life cycle by on-line image analysis. J Appl Microbiol. 2003; 95:1152–60. https://doi.org/10.1046/j.1365-2672.2003.02098.x 14633045

6. Lübbehüsen T L, Nielsen J, McIntyre M. Morphology and physiology of the dimorphic fungus Mucor circinelloides (syn. M. racemosus) during anaerobic growth. Mycol Res. 2003; 107:223–30. https://doi.org/10.1017/S0953756203007299 12747334

7. Hassan MIA, Voigt K. Pathogenicity patterns of mucormycosis: epidemiology, interaction with immune cells and virulence factors. Med Mycol. 2019; 1;57(Supplement_2):S245–S256. https://doi.org/10.1093/mmy/myz011 30816980

8. Baldin C, Ibrahim AS. Molecular mechanisms of mucormycosis-The bitter and the sweet. PLoS Pathog. 2017; 3;13(8):e1006408. https://doi.org/10.1371/journal.ppat.1006408 28771587

9. Jeong W, Keighley C, Wolfe R, Lee WL, Slavin MA, Kong DCM, et al. The epidemiology and clinical manifestations of mucormycosis: a systematic review and meta-analysis of case reports. Clin Microbiol Infect. 2019; 25(1):26–34. https://doi.org/10.1016/j.cmi.2018.07.011 30036666

10. Chander J, Kaur M, Bhalla M, Punia RS, Singla N, Bhola K et al. Changing Epidemiology of Mucoralean Fungi: Chronic Cutaneous Infection Caused by Mucor irregularis. Mycopathologia 2015; 180(3–4):181–6. https://doi.org/10.1007/s11046-015-9908-z 26170185

11. Lewis RE, Kontoyiannis DP. Epidemiology and treatment of mucormycosis. Future Microbiol. 2012; 8(9):1163–1175. https://doi.org/10.2217/fmb.13.78

12. Skiada A, Lass-Floerl C, Klimko N, Ibrahim A, Roilides E, Petrikkos G. Challenges in the diagnosis and treatment of mucormycosis. Med Mycol. 2018;1;56(suppl_1):93–101. https://doi.org/10.1093/mmy/myx101 29538730

13. Jenks JD, Reed SL, Seidel D, Koehler P, Cornely OA et al. Rare mould infections caused by Mucorales, Lomentospora prolificans and Fusarium, in San Diego, CA: the role of antifungal combination therapy. Int J Antimicrob Agents. 2018; 52(5):706–12. https://doi.org/10.1016/j.ijantimicag.2018.08.005 30099056

14. Ibrahim AS, Spellberg B, Walsh TJ, Kontoyiannis DP. Pathogenesis of mucormycosis. Clin Infect Dis. 2012; 54 Suppl 1:S16–22. https://doi.org/10.1093/cid/cir865

15. Lee SC, Li A, Calo S, Heitman J. Calcineurin plays key roles in the dimorphic transition and virulence of the human pathogenic zygomycete Mucor circinelloides. PLoS Pathog. 2013; 9: e1003625. https://doi.org/10.1371/journal.ppat.1003625 24039585

16. Sephton-Clark PCS, Muñoz JF, Ballou ER, Cuomo CA, Voelz K. Pathways of Pathogenicity: Transcriptional Stages of Germination in the Fatal Fungal Pathogen Rhizopus delemar. mSphere. 2018; 3(5). https://doi.org/10.1128/mSphere.00403-18

17. Li CH, Cervantes M, Springer DJ, Boekhout T, Ruiz-Vazquez RM, Torres-Martinez SR, et al. Sporangiospore size dimorphism is linked to virulence of Mucor circinelloides. PLoS Pathog. 2011; 7(6): e1002086. https://doi.org/10.1371/journal.ppat.1002086 21698218

18. Patiño-Medina JA., Maldonado-Herrera G, Pérez-Arques C, Alejandre-Castañeda V, Reyes-Mares NY, Valle-Maldonado MI, et al. Control of morphology and virulence by ADP-ribosylation factors (Arf) in Mucor circinelloides. Curr Genet. 2018; 64:853–69. https://doi.org/10.1007/s00294-017-0798-0 29264641

19. Fuller KK, Rhodes JC. Protein kinase A and fungal virulence: a sinister side to a conserved nutrient sensing pathway. Virulence. 2012; 3(2):109–21. https://doi.org/10.4161/viru.19396 22460637

20. Ocampo J, Fernandez Nuñez L, Silva F, Pereyra E, Moreno S, Garre V, et al. A subunit of protein kinase A regulates growth and differentiation in the fungus Mucor circinelloides. Eukaryot Cell. 2009; 8:933–44. https://doi.org/10.1128/EC.00026-09 19411621

21. Tesmer JJ. The quest to understand heterotrimeric G protein signaling. Nat Struct Mol Biol. 2010; 17: 650–2. https://doi.org/10.1038/nsmb0610-650 20520658

22. Syrovatkina V, Alegre KO, Dey R, Huang XY. Regulation, Signaling, and Physiological Functions of G-Proteins. J Mol Biol. 2016; 428(19):3850–68. https://doi.org/10.1016/j.jmb.2016.08.002 27515397

23. Hicks JK, Yu JH, Keller NP, Adams TH. Aspergillus sporulation and mycotoxinproduction both require inactivation of the FadA G alpha protein-dependent signaling pathway. EMBO J. 1997 16(16):4916–23. doi: 10.1093/emboj/16.16.4916 9305634

24. Roze LV, Beaudry RM, Keller NP, Linz JE. Regulation of aflatoxin synthesis by FadA/cAMP/protein kinase A signaling in Aspergillus parasiticus. Mycopathologia. 2004; 158: 219–32. https://doi.org/10.1023/B:MYCO.0000041841.71648.6e 15518351

25. Valle-Maldonado MI, Jácome-Galarza IE, Díaz-Pérez AL, Martínez-Cadena G, Campos-García J, Ramírez-Díaz MI, et al. Phylogenetic analysis of fungal heterotrimeric G protein-encoding genes and their expression during dimorphism in Mucor circinelloides. Fungal Biol. 2015; 119(12):1179–93. https://doi.org/10.1016/j.funbio.2015.08.009 26615741

26. Bölker M. Sex and crime: heterotrimeric G proteins in fungal mating and pathogenesis. Fungal Genet Biol. 1998; 25(3):143–56. https://doi.org/10.1006/fgbi.1998.1102 9917369

27. Nicolás FE, de Haro JP, Torres-Martínez S, Ruiz-Vázquez RM. Mutants defective in a Mucor circinelloides dicer-like gene are not compromised in siRNA silencing but display developmental defects. Fungal Genet Biol. 2007; 44(6):504–16. https://doi.org/10.1016/j.fgb.2006.09.003 17074518

28. Wolff A. M., Arnau J. Cloning of Glyceraldehyde-3-phosphate Dehydrogenase-Encoding Genes in Mucor circinelloides (Syn. racemosus) and Use of the gpd1 Promoter for Recombinant Protein Production. Fungal Genet Biol. 2002; 35 (1): 21–29. https://doi.org/10.1006/fgbi.2001.1313 11860262

29. Valle-Maldonado MI, Jácome-Galarza IE, Gutiérrez-Corona F, Ramírez-Díaz MI, Campos-García J, Meza-Carmen V. Selection of reference genes for quantitative real time RT-PCR during dimorphism in the zygomycete Mucor circinelloides. Mol Biol Rep; 2015; 42(3):705–11. https://doi.org/10.1007/s11033-014-3818-x 25391770

30. Rangel-Porras RA, Meza-Carmen V, Martinez-Cadena G, Torres-Guzmán JC, González-Hernández GA, Arnau J, et al. Molecular analysis of an NAD-dependent alcohol dehydrogenase from the zygomycete Mucor circinelloides. Mol Genet Genomics. 2005; 274(4):354–63. https://doi.org/10.1007/s00438-005-0025-4 16179992

31. Rodríguez C, Galindo LR, Siverio JM. Nitrogen-dependent calcineurin activation in the yeast Hansenula polymorpha. Fungal Genet Biol. 2013; 53:34–41. https://doi.org/10.1016/j.fgb.2013.01.007 23403359

32. Patiño-Medina J. A., Vargas-Tejedaa D., Valle-Maldonado M. I., Alejandre-Castañed V, Jácome-Galarz I. E., Villegas-Moreno J., et al. Sporulation on blood serum increases the virulence of Mucor circinelloides. Microbial Pathogenesis. 2019; 137: 103737. https://doi.org/10.1016/j.micpath.2019.103737 31513895

33. Díaz-Pérez SP, Patiño-Medina JA, Valle-Maldonado MI, López-Torres A, Jacome-Galarza IE, Anaya Martínez V, et al. Alteration of fermentative metabolism enhances Mucor circinelloides virulence. Infect Immun; 2019. (In press) doi: 10.1128/IAI.00434-19 31685547

34. Navarro E, Lorca-Pascual JM, Quiles-Rosillo MD, Nicolás FE, Garre V, Torres-Martínez S, et al. A negative regulator of light-inducible carotenogenesis in Mucor circinelloides. Mol Genet Genomics. 2001; 266(3):463–70. https://doi.org/10.1007/s004380100558 11713676

35. Yordy MR, Bowen JW. Na,K-ATPase expression and cell volume during hypertonic stress in human renal cells. Kidney Int. 1993; 43(4):940–8. https://doi.org/10.1038/ki.1993.132 8386782

36. Mendoza I, Rubio F, Rodriguez-Navarro A, Pardo JM. The protein phosphatase calcineurin is essential for NaCl tolerance of Saccharomyces cerevisiae. J Biol Chem. 1994; 269(12):8792–6. 8132612

37. Peng XD, Zhao GQ, Lin J, Jiang N, Xu Q, Zhu CC, et al. Fungus induces the release of IL-8 in human corneal epithelial cells, via Dectin-1-mediated protein kinase C pathways. Int J Ophthalmol. 2015; 8(3):441–7. https://doi.org/10.3980/j.issn.2222-3959.2015.03.02 26085988

38. Chamilos G, Lewis RE, Lamaris G, Walsh TJ, Kontoyiannis DP. Zygomycetes hyphae trigger an early, robust 
proinflammatory response in human polymorphonuclear neutrophils through toll-like receptor 2 induction but display relative resistance to oxidative damage. Antimicrob Agents Chemother. 2008; 52:722–4. https://doi.org/10.1128/AAC.01136-07 18025115

39. Wüthrich M, Deepe GS Jr, Klein B. Adaptive immunity to fungi. Annu Rev Immunol. 2012; 30:115–48. https://doi.org/10.1146/annurev-immunol-020711-074958 22224780

40. López-Muñoz A, Nicolás FE, García-Moreno D, Pérez-Oliva AB, Navarro-Mendoza MI, Hernández-Oñate MA et al. An Adult Zebrafish Model Reveals that Mucormycosis Induces Apoptosis of Infected Macrophages. Sci Rep. 2018; 8(1):12802. https://doi.org/10.1038/s41598-018-30754-6 30143654

41. Zhu J, Zhu XG, Ying SH, Feng MG. Effect of vacuolar ATPase subunit H (VmaH) on cellular pH, asexual cycle, stress tolerance and virulence in Beauveria bassiana. Fungal Genet Biol. 2017; 98:52–60. https://doi.org/10.1016/j.fgb.2016.12.004 28011319

42. Phillips DJ, Margosan DA, Mackey BE. Size, nuclear number, and aggressiveness of Botrytis cinerea on media of varied glucose concentrations. Phytopathology. 1987; 77: 1606–1608.

43. Velagapudi R, Hsueh YP, Geunes-Boyer S, Wright JR, Heitman J. Spores as infectious propagules of Cryptococcus neoformans. Infect Immun 2009; 77(10):4345–55. https://doi.org/10.1128/IAI.00542-09 19620339

44. Desnos-Ollivier M, Patel S, Raoux-Barbot D, Heitman J, Dromer F. Cryptococcosis serotypes impact outcome and provide evidence of Cryptococcus neoformans speciation. mBio. 2015; 6(3): e00311–15. https://doi.org/10.1128/mBio.00311-15 26060271

45. Navarro-Mendoza MI, Pérez-Arques C, Panchal S, Nicolás FE, Mondo SJ, Ganguly P, et al. Early Diverging Fungus Mucor circinelloides Lacks Centromeric Histone CENP-A and Displays a Mosaic of Point and Regional Centromeres. Curr Biol. 2019; 29(22):3791–3802. https://doi.org/10.1016/j.cub.2019.09.024 31679929

46. Salcedo-Hernandez R, Ruiz-Herrera J. Isolation and characterization of a mycelial cytochrome aa3-deficient mutant and the role of mitochondria in dimorphism of Mucor rouxii. Exp Mycol. 1993; 17:142–54. https://doi.org/10.1006/emyc.1993.1013

47. Trieu TA, Navarro-Mendoza MI, Pérez-Arques C, Sanchis M, Capilla J, Navarro-Rodriguez P, et al. RNAi-Based Functional Genomics Identifies New Virulence Determinants in Mucormycosis. PLoS Pathog. 2017; 13: e1006150. https://doi.org/10.1371/journal.ppat.1006150 28107502

48. van Heeswijck R, Roncero MIG. High frequency transformation of Mucor with recombinant plasmid DNA. Carlsberg Research Communications. 1984; 49:691–702. https://doi.org/10.1007/BF02907500.

49. Arnau J, Strøman P. Gene replacement and ectopic integration in the zygomycete Mucor circinelloides. Curr Genet. 1993; 23(5–6):542–6. https://doi.org/10.1007/BF00312649 8319313

50. Gutiérrez A, López-García S, Garre V. High reliability transformation of the basal fungus Mucor circinelloides by electroporation. J Microbiol Methods. 2011; 84:442–6. https://doi.org/10.1016/j.mimet.2011.01.002 21256886

51. Sambrook JF, Russell DW. Molecular cloning: A laboratory manual, 3 ed. Ed. Cold Spring Harbor Press; 2001.

52. Oshel P. HMDS and specimen drying for SEM. Micros today. 1997; 5(4): 16–7 https://doi.org/10.1017/S155192950006140X.

53. Secretaría de Agricultura, Ganadería, Desarrollo Rural, Pesca y Alimentación (SAGARPA) NORMA Oficial Mexicana NOM-062- ZOO-1999. Especificaciones técnicas para la producción, cuidado y uso de los animales de laboratorio. Diario Oficial de la Federación 2. 2001; 107–67 (In Spanish).

54. Rodríguez-Andrade E, Hernández-Ramírez KC, Díaz-Peréz SP, Díaz-Magaña A, Chávez-Moctezuma MP, Meza-Carmen V et al. Genes from pUM505 plasmid contribute to Pseudomonas aeruginosa virulence. Antonie Van Leeuwenhoek. 2016; 109: 389–96. https://doi.org/10.1007/s10482-015-0642-9 26739475

55. Corrochano LM, Kuo A, Marcet-Houben M, Polaino S, Salamov A, Villalobos-Escobedo JM, et al. Expansion of Signal Transduction Pathways in Fungi by Extensive Genome Duplication. Curr Biol. 2016; 26(12):1577–84. https://doi.org/10.1016/j.cub.2016.04.038 27238284


Článek vyšel v časopise

PLOS One


2019 Číslo 12