The salivary gland proteome of root-galling grape phylloxera (Daktulosphaira vitifoliae Fitch) feeding on Vitis spp.


Autoři: Markus W. Eitle aff001;  James C. Carolan aff002;  Michaela Griesser aff001;  Astrid Forneck aff001
Působiště autorů: University of Natural Resources and Life Sciences, Department of Crop Sciences, Institute of Viticulture and Pomology, Vienna, Austria aff001;  Department of Biology, Maynooth University, Maynooth, Co. Kildare, Ireland aff002
Vyšlo v časopise: PLoS ONE 14(12)
Kategorie: Research Article
doi: 10.1371/journal.pone.0225881

Souhrn

The successful parasitisation of a plant by a phytophagous insect is dependent on the delivery of effector molecules into the host. Sedentary gall forming insects, such as grape phylloxera (Daktulosphaira vitifoliae Fitch, Phylloxeridae), secrete multiple effectors into host plant tissues that alter or modulate the cellular and molecular environment to the benefit of the insect. The identification and characterisation of effector proteins will provide insight into the host-phylloxera interaction specifically the gall-induction processes and potential mechanisms of plant resistance. Using proteomic mass spectrometry and in-silico secretory prediction, 420 putative effectors were determined from the salivary glands or the root-feeding D. vitifoliae larvae reared on Teleki 5C (V. berlandieri x V. riparia). Among them, 170 conserved effectors were shared between D. vitifoliae and fourteen phytophagous insect species. Quantitative RT-PCR analysis of five conserved effector candidates (protein disulfide-isomerase, peroxidoredoxin, peroxidase and a carboxypeptidase) revealed that their gene expression decreased, when larvae were starved for 24 h, supporting their assignment as effector molecules. The D. vitifoliae effectors identified here represent a functionally diverse group, comprising both conserved and unique proteins that provide new insight into the D. vitifoliaeVitis spp. interaction and the potential mechanisms by which D. vitifoliae establishes the feeding site, suppresses plant defences and modulates nutrient uptake.

Klíčová slova:

Aphids – Gene expression – Insect physiology – Insects – Larvae – Plant-insect interactions – Proteomes – Salivary glands


Zdroje

1. Giron D, Huguet E, Stone GN, Body M. Insect-induced effects on plants and possible effectors used by galling and leaf-mining insects to manipulate their host-plant. J Insect Physiol. 2016;84:70–89. doi: 10.1016/j.jinsphys.2015.12.009 26723843

2. Win J, Chaparro-Garcia A, Belhaj K, Saunders D, Yoshida K, Dong S, et al., editors. Effector biology of plant-associated organisms: concepts and perspectives. Cold Spring Harb Symp Quant Biol. 2012;77:235–247. doi: 10.1101/sqb.2012.77.015933 23223409

3. Hogenhout SA, Van der Hoorn RA, Terauchi R, Kamoun S. Emerging concepts in effector biology of plant-associated organisms. Mol Plant Microbe Interact. 2009;22(2):115–122. doi: 10.1094/MPMI-22-2-0115 19132864

4. Robinson AS, Franz G, Atkinson PW. Insect transgenesis and its potential role in agriculture and human health. Insect Biochem Mol Biol. 2004;34(2):113–120. doi: 10.1016/j.ibmb.2003.10.004 14871607

5. Yin K, Qiu J-L. Genome editing for plant disease resistance: applications and perspectives. Philos Trans R Soc Lond B Biol Sci. 2019;374(1767):20180322. doi: 10.1098/rstb.2018.0322 30967029

6. Atamian HS, Chaudhary R, Cin VD, Bao E, Girke T, Kaloshian I. In planta expression or delivery of potato aphid Macrosiphum euphorbiae effectors Me10 and Me23 enhances aphid fecundity. Mol Plant Microbe Interact. 2013;26(1):67–74. doi: 10.1094/MPMI-06-12-0144-FI 23194342

7. Elzinga DA, De Vos M, Jander G. Suppression of plant defenses by a Myzus persicae (green peach aphid) salivary effector protein. Mol Plant Microbe Interact. 2014;27(7):747–756. doi: 10.1094/MPMI-01-14-0018-R 24654979

8. Mutti NS, Louis J, Pappan LK, Pappan K, Begum K, Chen M-S, et al. A protein from the salivary glands of the pea aphid, Acyrthosiphon pisum, is essential in feeding on a host plant. Proc Natl Acad Sci. 2008;105(29):9965–9969. doi: 10.1073/pnas.0708958105 18621720

9. Zhao C, Shukle R, Navarro-Escalante L, Chen M, Richards S, Stuart JJ. Avirulence gene mapping in the Hessian fly (Mayetiola destructor) reveals a protein phosphatase 2C effector gene family. J Insect Physiol. 2016;84:22–31. doi: 10.1016/j.jinsphys.2015.10.001 26439791

10. Ji R, Ye W, Chen H, Zeng J, Li H, Yu H, et al. A salivary endo-β-1, 4-glucanase acts as an effector that enables the brown planthopper to feed on rice. Plant Physiol. 2017;173(3):1920–1932. doi: 10.1104/pp.16.01493 28126846

11. Matsumoto Y, Hattori M. The green rice leafhopper, Nephotettix cincticeps (Hemiptera: Cicadellidae), salivary protein NcSP75 is a key effector for successful phloem ingestion. PloS One. 2018;13(9):e0202492. doi: 10.1371/journal.pone.0202492 30183736

12. Xu H-X, Qian L-X, Wang X-W, Shao R-X, Hong Y, Liu S-S, et al. A salivary effector enables whitefly to feed on host plants by eliciting salicylic acid-signaling pathway Proc Natl Acad Sci. 2019;116(2):490–495. doi: 10.1073/pnas.1714990116 30584091

13. Wang N, Zhao P, Ma Y, Yao X, Sun Y, Huang X, et al. A whitefly effector Bsp9 targets host immunity regulator WRKY33 to promote performance. Philos Trans R Soc Lond B Biol Sci. 2019;374(1767):20180313. doi: 10.1098/rstb.2018.0313 30967015

14. Stafford-Banks CA, Rotenberg D, Johnson BR, Whitfield AE, Ullman DE. Analysis of the salivary gland transcriptome of Frankliniella occidentalis. PloS One. 2014;9(4):e94447. doi: 10.1371/journal.pone.0094447 24736614

15. Boulain H, Legeai F, Guy E, Morlière S, Douglas NE, Oh J, et al. Fast evolution and lineage-specific gene family expansions of aphid salivary effectors driven by interactions with host-plants. Genome Biol Evol. 2018;10(6):1554–1572. doi: 10.1093/gbe/evy097 29788052

16. Carolan JC, Caragea D, Reardon KT, Mutti NS, Dittmer N, Pappan K, et al. Predicted effector molecules in the salivary secretome of the pea aphid (Acyrthosiphon pisum): A dual transcriptomic/proteomic approach. J Proteome Res. 2011;10(4):1505–1518. doi: 10.1021/pr100881q 21226539

17. Ji R, Yu H, Fu Q, Chen H, Ye W, Li S, et al. Comparative transcriptome analysis of salivary glands of two populations of rice brown planthopper, Nilaparvata lugens, that differ in virulence. PloS One. 2013;8(11):e79612. doi: 10.1371/journal.pone.0079612 24244529

18. Su Y-L, Li J-M, Li M, Luan J-B, Ye X-D, Wang X-W, et al. Transcriptomic analysis of the salivary glands of an invasive whitefly. PLoS One. 2012;7(6):e39303. doi: 10.1371/journal.pone.0039303 22745728

19. Zhang Y, Fan J, Sun J, Francis F, Chen J. Transcriptome analysis of the salivary glands of the grain aphid, Sitobion avenae. Sci Rep. 2017;7(1):15911. doi: 10.1038/s41598-017-16092-z 29162876

20. Zhao C, Escalante LN, Chen H, Benatti TR, Qu J, Chellapilla S, et al. A massive expansion of effector genes underlies gall-formation in the wheat pest Mayetiola destructor. Curr Biol. 2015;25(5):613–620. doi: 10.1016/j.cub.2014.12.057 25660540

21. Bos JI, Prince D, Pitino M, Maffei ME, Win J, Hogenhout SA. A functional genomics approach identifies candidate effectors from the aphid species Myzus persicae (green peach aphid). PLoS Genet. 2010;6(11):e1001216. doi: 10.1371/journal.pgen.1001216 21124944

22. Hori K. Insect secretions and their effect on plant growth, with special reference to hemipterans. Biology of insect-induced plant galls Oxford University Press, New York. 1992:157–170.

23. Stuart J. Insect effectors and gene-for-gene interactions with host plants. Curr Opin Insect Sci. 2015;9:56–61.

24. Thorpe P, Cock PJ, Bos J. Comparative transcriptomics and proteomics of three different aphid species identifies core and diverse effector sets. BMC Genomics. 2016;17(1):172–190.

25. Wieczorek K, Hensler S, Forneck A, editors. Displaying sink-source flux in phylloxerated grapevines by microscopic techniques. Acta Hortic. 2013;1045:29–32.

26. Porten M, Huber L. An assessment method for the quantification of Daktulosphaira vitifoliae (Fitch)(Hem., Phylloxeridae) populations in the field. J Appl Entomol. 2003;127(3):157–162.

27. Powell K, Cooper P, Forneck A. The biology, physiology and host-plant interactions of grape phylloxera Daktulosphaira vitifoliae. Adv Insect Physiol. 2013;45:159–218.

28. Huber L. Schaderrerger im Wurzelraum von Reben (Vitis spp.)—Vorkommen, Wirkung, Interaktionen—und Möglichkeiten zu deren Kontrolle durch Maßnahmen des Integrated Pest Managements (IPM). Dissertation of the Johannes Gutenberg University Mainz. 2007.

29. Omer A, Granett J, De Benedictis J, Walker M. Effects of fungal root infections on the vigor of grapevines infested by root-feeding grape phylloxera. Vitis. 1995;34(3):165–170.

30. Powell K, Korosi G, editors. Taking the strain—selecting the right rootstock to protect against endemic phylloxera strains. Acta Hortic. 2013;1045:99–107.

31. Forneck A, Walker M, Blaich R. Ecological and genetic aspects of grape phylloxera Daktulosphaira vitifoliae (Hemiptera: Phylloxeridae) performance on rootstock hosts. Bull Entomol Res. 2001;91(06):445–451.

32. Forneck A, Powell KS, Walker MA. Scientific opinion: Improving the definition of grape phylloxera biotypes and standardizing biotype screening protocols. Am J Enol Vitic. 2016;67(4):371–376.

33. Granett J, Timper P, Lider L. Grape phylloxera (Daktulosphaira vitifoliae)(Homoptera: Phylloxeridae) biotypes in California. J Econ Entomol. 1985;78(6):1463–1467.

34. Kocsis L, Granett J, Walker M, Lin H, Omer A. Grape phylloxera populations adapted to Vitis berlandieri x V. riparia rootstocks. Am J Enol Vitic. 1999;50(1):101–106.

35. Korosi G, Powell K, Clingeleffer P, Smith B, Walker R, Wood J, editors. New hybrid rootstock resistance screening for phylloxera under laboratory conditions. Acta Hortic. 2013;904:53–58.

36. Riaz S, Lund KT, Granett J, Walker MA. Population Diversity of Grape Phylloxera in California and Evidence for Sexual Reproduction. Am J Enol Vitic. 2017;68(2):218–227.

37. Song G-C, Granett J. Grape phylloxera (Homoptera: Phylloxeridae) biotypes in France. J Econ Entomol. 1990;83(2):489–493.

38. Sun Q, Du Y, Wang Z, Di H. Research progress on biotypes and genetic diversity of grape phylloxera. J Fruit Sci. 2012;1:125–129.

39. Forneck A, Kleinmann S, Blaich R, Anvari S. Histochemistry and anatomy of phylloxera (Daktulosphaira vitifoliae) nodosities on young roots of grapevine (Vitis spp). Vitis. 2002;41(2):93–98.

40. Hofmann E. Die Histologie der Nodositäten verschiedener Rebensorten bei Reblausbefall. Vitis. 1957;1:66–81.

41. Kellow AV, Sedgley M, Van Heeswijck R. Interaction between Vitis vinifera and grape phylloxera: changes in root tissue during nodosity formation. Ann Bot. 2004;93(5):581–590. doi: 10.1093/aob/mch082 15044213

42. Niklowitz W. Histologische Untersuchungen an Reblausgallen. Phytopath Z. 1955;24:299–340.

43. Lawo N, Griesser M, Forneck A. Expression of putative expansin genes in phylloxera (Daktulosphaira vitifoliae Fitch) induced root galls of Vitis spp. Eur J Plant Pathol. 2013;136(2):383–391. doi: 10.1007/s10658-013-0173-z 26074670

44. Eitle MW, Loacker J, Meng-Reiterer J, Schuhmacher R, Griesser M, Forneck A. Polyphenolic profiling of roots (Vitis spp.) under grape phylloxera (D. vitifoliae Fitch) attack. Plant Physiol Biochem. 2019;135:174–181. doi: 10.1016/j.plaphy.2018.12.004 30553139

45. Eitle MW, Griesser M, Vankova R, Dobrev P, Aberer S, Forneck A. Grape phylloxera (D. vitifoliae) manipulates SA/JA concentrations and signalling pathways in root galls of Vitis spp. Plant Physiol Biochem. 2019;144:85–91. doi: 10.1016/j.plaphy.2019.09.024 31561201

46. Lawo NC, Weingart GJ, Schuhmacher R, Forneck A. The volatile metabolome of grapevine roots: First insights into the metabolic response upon phylloxera attack. Plant Physiol Biochem. 2011;49(9):1059–1063. doi: 10.1016/j.plaphy.2011.06.008 21764593

47. Nabity PD, Haus MJ, Berenbaum MR, DeLucia EH. Leaf-galling phylloxera on grapes reprograms host metabolism and morphology. Proc Natl Acad Sci. 2013;110(41):16663–16668. doi: 10.1073/pnas.1220219110 24067657

48. Griesser M, Lawo NC, Crespo-Martinez S, Schoedl-Hummel K, Wieczorek K, Gorecka M, et al. Phylloxera (Daktulosphaira vitifoliae Fitch) alters the carbohydrate metabolism in root galls to allowing the compatible interaction with grapevine (Vitis ssp.) roots. Plant Sci. 2015;234:38–49. doi: 10.1016/j.plantsci.2015.02.002 25804808

49. Ryan F, Omer A, Aung L, Granett J. Effects of infestation by grape phylloxera on sugars, free amino acids, and starch of grapevine roots. Vitis. 2000;39(4):175–176.

50. Forneck A, Walker M, Blaich R. An in vitro assessment of phylloxera (Daktulosphaira vitifoliae Fitch)(Hom., Phylloxeridae) life cycle. J Appl Entomol. 2001;125(8):443–447.

51. Harsch M. Detektion differenziell exprimierter Gensequenzen bei Galleninduktion von Rebläusen (D. vitifoliae) an Reben (Vitis ssp.) [Diploma]: Universität Hohenheim, Stuttgart; 2004.

52. Forneck A, Huber L. (A) sexual reproduction–a review of life cycles of grape phylloxera, Daktulosphaira vitifoliae. Entomol Exp Appl. 2009;131(1):1–10.

53. Rispe C, Legeai F, Jaquiéry J, Breteaudeau A, Tagu D, Powell K, et al., editors. The grape phylloxera genome sequencing project. Acta Hortic. 2013;1045:15–19.

54. Götz S, García-Gómez JM, Terol J, Williams TD, Nagaraj SH, Nueda MJ, et al. High-throughput functional annotation and data mining with the Blast2GO suite. Nucleic Acids Res. 2008;36(10):3420–3435. doi: 10.1093/nar/gkn176 18445632

55. Krogh A, Larsson B, Von Heijne G, Sonnhammer EL. Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J Mol Biol. 2001;305(3):567–580. doi: 10.1006/jmbi.2000.4315 11152613

56. Pierleoni A, Martelli PL, Casadio R. PredGPI: a GPI-anchor predictor. BMC Bioinformatics. 2008;9(1):392–403.

57. Armenteros JJA, Tsirigos KD, Sønderby CK, Petersen TN, Winther O, Brunak S, et al. SignalP 5.0 improves signal peptide predictions using deep neural networks. Nat Biotechnol. 2019;37:420–423. doi: 10.1038/s41587-019-0036-z 30778233

58. Bendtsen JD, Jensen LJ, Blom N, Von Heijne G, Brunak S. Feature-based prediction of non-classical and leaderless protein secretion. Protein Eng Des Sel. 2004;17(4):349–356. doi: 10.1093/protein/gzh037 15115854

59. Huang H-J, Lu J-B, Li Q, Bao Y-Y, Zhang C-X. Combined transcriptomic/proteomic analysis of salivary gland and secreted saliva in three planthopper species. J Proteomics. 2018;172:25–35. doi: 10.1016/j.jprot.2017.11.003 29109049

60. Al-jbory Z, Anderson KM, Harris MO, Mittapalli O, Whitworth RJ, Chen M-S. Transcriptomic analyses of secreted proteins from the salivary glands of wheat midge larvae. J Insect Sci. 2018;18(1):17–22. doi: 10.1093/jisesa/iex103

61. Chen M-S, Zhao H-X, Zhu YC, Scheffler B, Liu X, Liu X, et al. Analysis of transcripts and proteins expressed in the salivary glands of Hessian fly (Mayetiola destructor) larvae. J Insect Physiol. 2008;54(1):1–16. doi: 10.1016/j.jinsphys.2007.07.007 17854824

62. Serteyn L, Francis F. Insight into salivary gland proteomes of two polyphagous stink bugs: Nezara viridula L. and Halyomorpha halys Stål. Proteomics. 2019;19(7):1800436.

63. Teng X, Zhang Z, He G, Yang L, Li F. Validation of reference genes for quantitative expression analysis by real-time RT-PCR in four lepidopteran insects. J Insect Sci. 2012;12(60):1–17.

64. Andersen CL, Jensen JL, Ørntoft TF. Normalization of real-time quantitative reverse transcription-PCR data: a model-based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets. Cancer Res. 2004;64(15):5245–5250. doi: 10.1158/0008-5472.CAN-04-0496 15289330

65. Davis GK. Cyclical parthenogenesis and viviparity in aphids as evolutionary novelties. J Exp Zool B Mol Dev Evol. 2012;318(6):448–459. doi: 10.1002/jez.b.22441 22644631

66. Favret C, Blackman RL, Miller GL, Victor B. Catalog of the phylloxerids of the world (Hemiptera, Phylloxeridae). Zookeys. 2016;(629):83–101. doi: 10.3897/zookeys.629.10709 27920598

67. Heie O. Paleontology and phylogeny. Aphids: Their biology, natural enemies and control. 1987;2a:367–391.

68. Ortiz-Rivas B, Martínez-Torres D. Combination of molecular data support the existence of three main lineages in the phylogeny of aphids (Hemiptera: Aphididae) and the basal position of the subfamily Lachninae. Mol Phylogenet Evol. 2010;55(1):305–317. doi: 10.1016/j.ympev.2009.12.005 20004730

69. Rispe C, Legeai F, Papura D, Bretaudeau A, Hudaverdian S, Le Trionnaire G, et al. De novo transcriptome assembly of the grapevine phylloxera allows identification of genes differentially expressed between leaf-and root-feeding forms. BMC Genomics. 2016;17(1):219–234.

70. Guiguet A, Dubreuil G, Harris MO, Appel HM, Schultz JC, Pereira MH, et al. Shared weapons of blood-and plant-feeding insects: surprising commonalities for manipulating hosts. J Insect Physiol. 2016;84:4–21. doi: 10.1016/j.jinsphys.2015.12.006 26705897

71. Konishi H, Noda H, Tamura Y, Hattori M. Proteomic analysis of the salivary glands of the rice brown planthopper, Nilaparvata lugens (Stål) (Homoptera: Delphacidae). Appl Entomol Zool. 2009;44(4):525–534.

72. Miao Y-T, Deng Y, Jia H-K, Liu Y-D, Hou M-L. Proteomic analysis of watery saliva secreted by white-backed planthopper, Sogatella furcifera. PloS One. 2018;13(5):e0193831. doi: 10.1371/journal.pone.0193831 29727440

73. Will T, Vilcinskas A. The structural sheath protein of aphids is required for phloem feeding. Insect Biochem Mol Biol. 2015;57:34–40. doi: 10.1016/j.ibmb.2014.12.005 25527379

74. Wilkinson B, Gilbert HF. Protein disulfide isomerase. Biochim Biophys Acta Proteins Proteom. 2004;1699(1–2):35–44.

75. Habash SS, Sobczak M, Siddique S, Voigt B, Elashry A, Grundler FM. Identification and characterization of a putative protein disulfide isomerase (HsPDI) as an alleged effector of Heterodera schachtii. Sci Rep. 2017;7:13536. doi: 10.1038/s41598-017-13418-9 29051538

76. Huang H-J, Liu C-W, Xu H-J, Bao Y-Y, Zhang C-X. Mucin-like protein, a saliva component involved in brown planthopper virulence and host adaptation. J Insect Physiol. 2017;98:223–230. doi: 10.1016/j.jinsphys.2017.01.012 28115117

77. Calderón-Cortés N, Quesada M, Watanabe H, Cano-Camacho H, Oyama K. Endogenous plant cell wall digestion: a key mechanism in insect evolution. Annu Rev Ecol Evol Syst. 2012;43:45–71.

78. Malgas S, van Dyk JS, Pletschke BI. A review of the enzymatic hydrolysis of mannans and synergistic interactions between β-mannanase, β-mannosidase and α-galactosidase. World J Microbiol Biotechnol. 2015;31(8):1167–1175. doi: 10.1007/s11274-015-1878-2 26026279

79. Rao SA, Carolan JC, Wilkinson TL. Proteomic profiling of cereal aphid saliva reveals both ubiquitous and adaptive secreted proteins. PLoS One. 2013;8(2):e57413. doi: 10.1371/journal.pone.0057413 23460852

80. Nicholson SJ, Hartson SD, Puterka GJ. Proteomic analysis of secreted saliva from Russian wheat aphid (Diuraphis noxia Kurd.) biotypes that differ in virulence to wheat. J Proteomics. 2012;75(7):2252–2268. doi: 10.1016/j.jprot.2012.01.031 22348819

81. Nicholson SJ, Puterka GJ. Variation in the salivary proteomes of differentially virulent greenbug (Schizaphis graminum Rondani) biotypes. J Proteomics. 2014;105:186–203. doi: 10.1016/j.jprot.2013.12.005 24355481

82. Musser RO, Hum-Musser SM, Eichenseer H, Peiffer M, Ervin G, Murphy JB, et al. Herbivory: caterpillar saliva beats plant defences. Nat. 2002;416(6881):599–600.

83. Gechev TS, Van Breusegem F, Stone JM, Denev I, Laloi C. Reactive oxygen species as signals that modulate plant stress responses and programmed cell death. Bioessays. 2006;28(11):1091–1101. doi: 10.1002/bies.20493 17041898

84. Blank L, Wolf T, Eimert K, Schröder M-B. Differential gene expression during hypersensitive response in Phylloxera-resistant rootstock ‘Börner’using custom oligonucleotide arrays. J Plant Interact. 2009;4(4):261–269.

85. Park C-J, Seo Y-S. Heat shock proteins: a review of the molecular chaperones for plant immunity. Plant Pathol J. 2015;31(4):323–333. doi: 10.5423/PPJ.RW.08.2015.0150 26676169

86. Pockley AG. Heat shock proteins as regulators of the immune response. Lancet. 2003;362(9382):469–476. doi: 10.1016/S0140-6736(03)14075-5 12927437

87. Kaloshian I, Walling LL. Hemipterans as plant pathogens. Annu Rev Phytopathol. 2005;43:491–521. doi: 10.1146/annurev.phyto.43.040204.135944 16078893

88. Timperio AM, Egidi MG, Zolla L. Proteomics applied on plant abiotic stresses: role of heat shock proteins (HSP). J Proteomics. 2008;71(4):391–411. doi: 10.1016/j.jprot.2008.07.005 18718564

89. Nabity PD. Insect‐induced plant phenotypes: Revealing mechanisms through comparative genomics of galling insects and their hosts. Am J Bot. 2016;103(6):979–981. doi: 10.3732/ajb.1600111 27257007

90. Forneck A, Wöhrle A, editors. A synthetic diet for phylloxera (Daktulosphaira vitifoliae Fitch). Acta Hortic. 2001;617:129–134.

91. Kingston K. Digestive and feeding physiology of Grape Phylloxera (Daktulosphaira vitifoliae Fitch). 2011. Dissertation of the Australian National University. Canberra. 2007.

92. Hewer A, Will T, van Bel AJ. Plant cues for aphid navigation in vascular tissues. J Exp Biol. 2010;213(23):4030–4042.

93. Karley A, Ashford D, Minto L, Pritchard J, Douglas A. The significance of gut sucrase activity for osmoregulation in the pea aphid, Acyrthosiphon pisum. J Insect Physiol. 2005;51(12):1313–1319. doi: 10.1016/j.jinsphys.2005.08.001 16169004

94. Kunieda T, Fujiyuki T, Kucharski R, Foret S, Ament S, Toth A, et al. Carbohydrate metabolism genes and pathways in insects: insights from the honey bee genome. Insect Mol Biol. 2006;15(5):563–576. doi: 10.1111/j.1365-2583.2006.00677.x 17069632

95. Bayés A, de la Vega MR, Vendrell J, Aviles FX, Jongsma MA, Beekwilder J. Response of the digestive system of Helicoverpa zea to ingestion of potato carboxypeptidase inhibitor and characterization of an uninhibited carboxypeptidase B. Insect Biochem Mol Biol. 2006;36(8):654–664. doi: 10.1016/j.ibmb.2006.05.010 16876708

96. Altincicek B, Vilcinskas A. Septic injury‐inducible genes in medicinal maggots of the green blow fly Lucilia sericata. Insect Mol Biol. 2009;18(1):119–125. doi: 10.1111/j.1365-2583.2008.00856.x 19076250

97. Mugford ST, Osbourn A. Evolution of serine carboxypeptidase-like acyltransferases in the monocots. Plant Signal Behav. 2010;5(2):193–195. doi: 10.4161/psb.5.2.11093 20173416

98. Sobczak M, Golinowski W. Cyst nematodes and syncytia. Genomics and Molecular Genetics of Plant-Nematode Interactions: Springer Press. 2011:61–82.

99. Jones MG, Goto DB. Root-knot nematodes and giant cells. Genomics and molecular genetics of plant-nematode interactions: Springer Press. 2011:83–100.

100. Schultz JC, Edger PP, Body MJ, Appel HM. A galling insect activates plant reproductive programs during gall development. bioRxivorg. 2018:383851.

101. Hassan S, Behm CA, Mathesius U. Effectors of plant parasitic nematodes that re-program root cell development. Funct Plant Biol. 2010;37(10):933–942.

102. Scharf I. The multifaceted effects of starvation on arthropod behaviour. Anim Behav. 2016;119:37–48.

103. Bansal R, Mian M, Mittapalli O, Michel AP. RNA-Seq reveals a xenobiotic stress response in the soybean aphid, Aphis glycines, when fed aphid-resistant soybean. BMC Genomics. 2014;15:972–986. doi: 10.1186/1471-2164-15-972 25399334


Článek vyšel v časopise

PLOS One


2019 Číslo 12