Direct comparison of retinal structure and function in retinitis pigmentosa by co-registering microperimetry and optical coherence tomography


Autoři: Jun Funatsu aff001;  Yusuke Murakami aff001;  Shunji Nakatake aff001;  Masato Akiyama aff001;  Kohta Fujiwara aff001;  Shotaro Shimokawa aff001;  Takashi Tachibana aff001;  Toshio Hisatomi aff002;  Yoshito Koyanagi aff001;  Yukihide Momozawa aff003;  Koh-Hei Sonoda aff001;  Yasuhiro Ikeda aff001
Působiště autorů: Department of Ophthalmology, Graduate School of Medical Science, Kyushu University, Fukuoka, Japan aff001;  Department of Ophthalmology, Faculty of Medicine, Fukuoka University, Fukuoka, Japan aff002;  Laboratory for Genotyping Development, RIKEN Center for Integrative Medical Sciences, Kanagawa, Japan aff003;  Department of Ophthalmology, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan aff004
Vyšlo v časopise: PLoS ONE 14(12)
Kategorie: Research Article
doi: 10.1371/journal.pone.0226097

Souhrn

Purpose

To evaluate the retinal structure-function relationships in the macula of retinitis pigmentosa (RP) patients by comparing microperimetry-3 (MP-3) images with co-registered optical coherence tomography (OCT) images.

Methods

Thirty patients with typical RP were recruited from our hospital. The maculae of patients were examined with MP-3 and OCT. The retinal sensitivity was measured by MP-3 at 40 testing points arranged concentrically in a 16° diameter of the central retina, and we divided the 40 points into four zones according to degree from the fovea (2°, 4°, 6°, and 8°). We analyzed the correlation coefficients between the retinal sensitivity and the total retinal thickness (TRT), the length from the inner limiting membrane to the retinal pigment epithelium (RPE), and between the retinal sensitivity and the outer retinal thickness (ORT), the length from the outer plexiform layer to the RPE at each stimulus point.

Results

TRT showed moderate correlations with the retinal sensitivity at 2° (median ρ = 0.59 interquartile range (IQR) [0.38–0.72]), 4° (ρ = 0.59 [0.55–0.68]) and 6° (ρ = 0.60 [0.54–0.63]), and TRT was weakly-to-moderately related to the retinal sensitivity at 8° (ρ = 0.27 [0.19–0.48]). ORT exhibited strong correlations at 2° (ρ = 0.72 [0.60–0.81]), 4° (ρ = 0.71 [0.75–0.67]) and 6° (ρ = 0.70 [0.54–0.74]), and a weak-to-moderate correlations at 8° (ρ = 0.34 [0.29–0.53]). ORT was more strongly correlated with the retinal sensitivity compared to TRT (p = 0.018).

Conclusion

ORT, rather than TRT, within 6° eccentricity was strongly correlated with the retinal sensitivity, suggesting that measuring ORT in those areas will help evaluate the macular status and progression in RP.

Klíčová slova:

Eyes – Fovea centralis – Ophthalmology – Pigments – Retina – Retinitis pigmentosa – Tomography – Visual acuity


Zdroje

1. Hartong DT, Berson EL, Dryja TP. Retinitis pigmentosa. Lancet (London, England). 2006;368(9549):1795–809. Epub 2006/11/23. doi: 10.1016/s0140-6736(06)69740-7 17113430.

2. Fariss RN, Li ZY, Milam AH. Abnormalities in rod photoreceptors, amacrine cells, and horizontal cells in human retinas with retinitis pigmentosa. Am J Ophthalmol. 2000;129(2):215–23. Epub 2000/02/22. doi: 10.1016/s0002-9394(99)00401-8 10682975.

3. Asahina Y, Kitano M, Hashimoto Y, Yanagisawa M, Murata H, Inoue T, et al. The structure-function relationship measured with optical coherence tomography and a microperimeter with auto-tracking: the MP-3, in patients with retinitis pigmentosa. Sci Rep. 2017;7(1):15766. Epub 2017/11/19. doi: 10.1038/s41598-017-16143-5 29150681; PubMed Central PMCID: PMC5693920.

4. Balasubramanian S, Uji A, Lei J, Velaga S, Nittala M, Sadda S. Interdevice comparison of retinal sensitivity assessments in a healthy population: the CenterVue MAIA and the Nidek MP-3 microperimeters. Br J Ophthalmol. 2018;102(1):109–13. Epub 2017/05/13. doi: 10.1136/bjophthalmol-2017-310258 28495907.

5. Hirooka K, Misaki K, Nitta E, Ukegawa K, Sato S, Tsujikawa A. Comparison of Macular Integrity Assessment (MAIA), MP-3, and the Humphrey Field Analyzer in the Evaluation of the Relationship between the Structure and Function of the Macula. PLoS One. 2016;11(3):e0151000. Epub 2016/03/15. doi: 10.1371/journal.pone.0151000 26974468; PubMed Central PMCID: PMC4790949.

6. Igarashi N, Matsuura M, Hashimoto Y, Hirasawa K, Murata H, Inoue T, et al. Assessing Visual Fields in Patients with Retinitis Pigmentosa Using a Novel Microperimeter with Eye Tracking: The MP-3. PLoS One. 2016;11(11):e0166666. Epub 2016/11/29. doi: 10.1371/journal.pone.0166666 27893769; PubMed Central PMCID: PMC5125600.

7. Rodriguez-Cavas MB, Tudela-Molino M, Del-Rio-Vellosillo M, Villegas-Perez MP, Garcia-Medina JJ. Evaluating the Usefulness of MP-3 Microperimetry in Glaucoma Patients. Am J Ophthalmol. 2018;190:200–1. Epub 2018/04/08. doi: 10.1016/j.ajo.2018.02.023 29625698.

8. Tepelus TC, Hariri AH, Al-Sheikh M, Sadda SR. Correlation Between Mesopic Retinal Sensitivity and Optical Coherence Tomographic Metrics of the Outer Retina in Patients With Non-Atrophic Dry Age-Related Macular Degeneration. Ophthalmic Surg Lasers Imaging Retina. 2017;48(4):312–8. Epub 2017/04/19. doi: 10.3928/23258160-20170329-05 28419396.

9. Kimura S, Morizane Y, Matoba R, Hosokawa M, Shiode Y, Hirano M, et al. Retinal sensitivity after displacement of submacular hemorrhage due to polypoidal choroidal vasculopathy: effectiveness and safety of subretinal tissue plasminogen activator. Jpn J Ophthalmol. 2017;61(6):472–8. Epub 2017/08/25. doi: 10.1007/s10384-017-0530-0 28836011.

10. Demirel S, Vingrys AJ. Eye Movements During Perimetry and the Effect that Fixational Instability Has on Perimetric Outcomes. Journal of glaucoma. 1994;3(1):28–35. Epub 1994/04/01. 19920549.

11. Wang Y, Toor SS, Gautam R, Henson DB. Blink frequency and duration during perimetry and their relationship to test-retest threshold variability. Invest Ophthalmol Vis Sci. 2011;52(7):4546–50. Epub 2011/03/31. doi: 10.1167/iovs.10-6553 21447676.

12. Asahina Y, Kitano M, Hashimoto Y, Yanagisawa M, Murata H, Inoue T, et al. The structure-function relationship measured with optical coherence tomography and a microperimeter with auto-tracking: the MP-3, in patients with retinitis pigmentosa. Scientific reports. 2017;7(1):15766–. doi: 10.1038/s41598-017-16143-5 29150681.

13. Morooka S, Hangai M, Nukada M, Nakano N, Takayama K, Kimura Y, et al. Wide 3-dimensional macular ganglion cell complex imaging with spectral-domain optical coherence tomography in glaucoma. Invest Ophthalmol Vis Sci. 2012;53(8):4805–12. Epub 2012/06/15. doi: 10.1167/iovs.12-9870 22695956.

14. Walia S, Fishman GA. Retinal nerve fiber layer analysis in RP patients using Fourier-domain OCT. Invest Ophthalmol Vis Sci. 2008;49(8):3525–8. Epub 2008/04/19. doi: 10.1167/iovs.08-1842 18421083.

15. Hood DC, Lazow MA, Locke KG, Greenstein VC, Birch DG. The transition zone between healthy and diseased retina in patients with retinitis pigmentosa. Invest Ophthalmol Vis Sci. 2011;52(1):101–8. Epub 2010/08/20. doi: 10.1167/iovs.10-5799 20720228; PubMed Central PMCID: PMC3053270.

16. Witkin AJ, Ko TH, Fujimoto JG, Chan A, Drexler W, Schuman JS, et al. Ultra-high resolution optical coherence tomography assessment of photoreceptors in retinitis pigmentosa and related diseases. Am J Ophthalmol. 2006;142(6):945–52. Epub 2006/12/13. doi: 10.1016/j.ajo.2006.07.024 17157580; PubMed Central PMCID: PMC1941775.

17. Sandberg MA, Brockhurst RJ, Gaudio AR, Berson EL. The association between visual acuity and central retinal thickness in retinitis pigmentosa. Invest Ophthalmol Vis Sci. 2005;46(9):3349–54. Epub 2005/08/27. doi: 10.1167/iovs.04-1383 16123439.

18. Walia S, Fishman GA, Edward DP, Lindeman M. Retinal nerve fiber layer defects in RP patients. Invest Ophthalmol Vis Sci. 2007;48(10):4748–52. Epub 2007/09/28. doi: 10.1167/iovs.07-0404 17898300.

19. Hagiwara A, Mitamura Y, Kumagai K, Baba T, Yamamoto S. Photoreceptor impairment on optical coherence tomographic images in patients with retinitis pigmentosa. Br J Ophthalmol. 2013;97(2):237–8. Epub 2012/11/23. doi: 10.1136/bjophthalmol-2012-302510 23172877.

20. Kurata K, Hosono K, Hotta Y. Long-term clinical course of 2 Japanese patients with PRPF31-related retinitis pigmentosa. Jpn J Ophthalmol. 2018;62(2):186–93. Epub 2018/01/07. doi: 10.1007/s10384-017-0560-7 29305715.

21. Sayo A, Ueno S, Kominami T, Okado S, Inooka D, Komori S, et al. Significant Relationship of Visual Field Sensitivity in Central 10 degrees to Thickness of Retinal Layers in Retinitis Pigmentosa. Invest Ophthalmol Vis Sci. 2018;59(8):3469–75. Epub 2018/07/20. doi: 10.1167/iovs.18-24635 30025100.

22. Koyanagi Y, Akiyama M, Nishiguchi KM, Momozawa Y, Kamatani Y, Takata S, et al. Genetic characteristics of retinitis pigmentosa in 1204 Japanese patients. Journal of Medical Genetics. 2019:jmedgenet-2018-105691. doi: 10.1136/jmedgenet-2018-105691 31213501

23. Ogata NG, Boer ER, Daga FB, Jammal AA, Stringham JM, Medeiros FA. Visual Crowding in Glaucoma. Invest Ophthalmol Vis Sci. 2019;60(2):538–43. Epub 2019/02/05. doi: 10.1167/iovs.18-25150 30716149; PubMed Central PMCID: PMC6361551.

24. Robinson DG, Margrain TH, Bailey C, Binns AM. An Evaluation of a Battery of Functional and Structural Tests as Predictors of Likely Risk of Progression of Age-Related Macular Degeneration. Invest Ophthalmol Vis Sci. 2019;60(2):580–9. Epub 2019/02/06. doi: 10.1167/iovs.18-25092 30721275.

25. Eliwa TF, Hussein MA, Zaki MA, Raslan OA. OUTER RETINAL LAYER THICKNESS AS GOOD VISUAL PREDICTOR IN PATIENTS WITH DIABETIC MACULAR EDEMA. Retina (Philadelphia, Pa). 2018;38(4):805–11. Epub 2017/03/24. doi: 10.1097/iae.0000000000001599 28333881.

26. Mitamura Y, Mitamura-Aizawa S, Katome T, Naito T, Hagiwara A, Kumagai K, et al. Photoreceptor impairment and restoration on optical coherence tomographic image. J Ophthalmol. 2013;2013:518170. Epub 2013/05/22. doi: 10.1155/2013/518170 23691278; PubMed Central PMCID: PMC3649344.

27. Rangaswamy NV, Patel HM, Locke KG, Hood DC, Birch DG. A comparison of visual field sensitivity to photoreceptor thickness in retinitis pigmentosa. Invest Ophthalmol Vis Sci. 2010;51(8):4213–9. Epub 2010/03/12. doi: 10.1167/iovs.09-4945 20220048; PubMed Central PMCID: PMC2910646.

28. Aleman TS, Cideciyan AV, Sumaroka A, Schwartz SB, Roman AJ, Windsor EA, et al. Inner retinal abnormalities in X-linked retinitis pigmentosa with RPGR mutations. Invest Ophthalmol Vis Sci. 2007;48(10):4759–65. Epub 2007/09/28. doi: 10.1167/iovs.07-0453 17898302; PubMed Central PMCID: PMC3178894.

29. Tan O, Chopra V, Lu AT, Schuman JS, Ishikawa H, Wollstein G, et al. Detection of macular ganglion cell loss in glaucoma by Fourier-domain optical coherence tomography. Ophthalmology. 2009;116(12):2305–14.e1-2. Epub 2009/09/12. doi: 10.1016/j.ophtha.2009.05.025 19744726; PubMed Central PMCID: PMC2787911.


Článek vyšel v časopise

PLOS One


2019 Číslo 12