Longitudinal changes in plasma hemopexin and alpha-1-microglobulin concentrations in women with and without clinical risk factors for pre-eclampsia


Autoři: Katja Murtoniemi aff001;  Grigorios Kalapotharakos aff003;  Tero Vahlberg aff004;  Katri Räikkonen aff005;  Eero Kajantie aff006;  Esa Hämäläinen aff010;  Bo Åkerström aff011;  Pia M. Villa aff012;  Stefan R. Hansson aff003;  Hannele Laivuori aff001
Působiště autorů: Medical and Clinical Genetics, University of Helsinki and Helsinki University Hospital, University of Helsinki, Finland aff001;  Department of Obstetrics and Gynaecology, University of Turku and Turku University Hospital, Turku, Finland aff002;  Skåne University Hospital, Department of Clinical Sciences Lund, Department of Obstetrics and Gynecology, Lund University, Lund, Sweden aff003;  Department of Clinical Medicine, Biostatistics, University of Turku and Turku University Hospital, Turku, Finland aff004;  Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, Helsinki, Finland aff005;  PEDEGO Research Unit, MRC Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland aff006;  National Institute for Health and Welfare, Helsinki, Finland aff007;  Children`s Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland aff008;  Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway aff009;  Department of Clinical Chemistry, University of Helsinki, Helsinki, Finland aff010;  Division of Infection Medicine, Department of Clinical Sciences, Lund University, Lund, Sweden aff011;  Department of Obstetrics and Gynecology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland aff012;  Institute for Molecular Medicine Finland, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland aff013;  Department of Obstetrics and Gynecology, Tampere University Hospital and Tampere University, Faculty of Medicine and Health Technology, Tampere, Finland aff014
Vyšlo v časopise: PLoS ONE 14(12)
Kategorie: Research Article
doi: 10.1371/journal.pone.0226520

Souhrn

Recent studies have shown increased concentration of fetal hemoglobin (HbF) in pre-eclamptic women. Plasma hemopexin (Hpx) and alpha-1-microglobulin (A1M) are hemoglobin scavenger proteins that protect against toxic effects of free heme released in the hemoglobin degradation process. We used an enzyme-linked immunosorbent assay to analyze maternal plasma Hpx and A1M concentrations at 12–14, 18–20 and 26–28 weeks of gestation in three groups: 1) 51 women with a low risk for pre-eclampsia (LRW), 2) 49 women with a high risk for pre-eclampsia (PE) who did not develop PE (HRW) and 3) 42 women with a high risk for PE who developed PE (HRPE). The study had three aims: 1) to investigate whether longitudinal differences exist between study groups, 2) to examine if Hpx and A1M concentrations develop differently in pre-eclamptic women with small for gestational age (SGA) fetuses vs. pre-eclamptic women with appropriate for gestational age fetuses, and 3) to examine if longitudinal Hpx and A1M profiles differ by PE subtype (early-onset vs. late-onset and severe vs. non-severe PE). Repeated measures analysis of variance was used to analyze differences in Hpx and A1M concentrations between the groups. We found that the differences in longitudinal plasma Hpx and A1M concentrations in HRW compared to HRPE and to LRW may be associated with reduced risk of PE regardless of clinical risk factors. In women who developed PE, a high A1M concentration from midgestation to late second trimester was associated with SGA. There were no differences in longitudinal Hpx and A1M concentrations from first to late second trimester in high-risk women who developed early-onset or. late-onset PE or in women who developed severe or. non-severe PE.

Klíčová slova:

Body Mass Index – Hypertensive disorders in pregnancy – Management of high-risk pregnancies – Oxidative stress – Preeclampsia – Pregnancy


Zdroje

1. Duley L. The global impact of pre-eclampsia and eclampsia. Semin Perinatol. 2009;33(3):130–7. doi: 10.1053/j.semperi.2009.02.010 19464502.

2. Say L, Chou D, Gemmill A, Tunçalp Ö, Moller AB, Daniels J, et al. Global causes of maternal death: a WHO systematic analysis. Lancet Glob Health. 2014;2(6):e323–33. doi: 10.1016/S2214-109X(14)70227-X 25103301.

3. Wu P, Haththotuwa R, Kwok CS, Babu A, Kotronias RA, Rushton C, et al. Preeclampsia and Future Cardiovascular Health: A Systematic Review and Meta-Analysis. Circ Cardiovasc Qual Outcomes. 2017;10(2). Epub 2017/02/22. doi: 10.1161/CIRCOUTCOMES.116.003497 28228456.

4. Alsnes IV, Vatten LJ, Fraser A, Bjørngaard JH, Rich-Edwards J, Romundstad PR, et al. Hypertension in Pregnancy and Offspring Cardiovascular Risk in Young Adulthood: Prospective and Sibling Studies in the HUNT Study (Nord-Trøndelag Health Study) in Norway. Hypertension. 2017;69(4):591–8. Epub 2017/02/21. doi: 10.1161/HYPERTENSIONAHA.116.08414 28223467.

5. Meekins JW, Pijnenborg R, Hanssens M, McFadyen IR, van Asshe A. A study of placental bed spiral arteries and trophoblast invasion in normal and severe pre-eclamptic pregnancies. Br J Obstet Gynaecol. 1994;101(8):669–74. doi: 10.1111/j.1471-0528.1994.tb13182.x 7947500.

6. Burton GJ, Woods AW, Jauniaux E, Kingdom JC. Rheological and physiological consequences of conversion of the maternal spiral arteries for uteroplacental blood flow during human pregnancy. Placenta. 2009;30(6):473–82. doi: 10.1016/j.placenta.2009.02.009 19375795; PubMed Central PMCID: PMC2697319.

7. Hung TH, Burton GJ. Hypoxia and reoxygenation: a possible mechanism for placental oxidative stress in preeclampsia. Taiwan J Obstet Gynecol. 2006;45(3):189–200. doi: 10.1016/S1028-4559(09)60224-2 17175463.

8. Zhong XY, Laivuori H, Livingston JC, Ylikorkala O, Sibai BM, Holzgreve W, et al. Elevation of both maternal and fetal extracellular circulating deoxyribonucleic acid concentrations in the plasma of pregnant women with preeclampsia. Am J Obstet Gynecol. 2001;184(3):414–9. doi: 10.1067/mob.2001.109594 11228496.

9. Knight M, Redman CW, Linton EA, Sargent IL. Shedding of syncytiotrophoblast microvilli into the maternal circulation in pre-eclamptic pregnancies. Br J Obstet Gynaecol. 1998;105(6):632–40. doi: 10.1111/j.1471-0528.1998.tb10178.x 9647154.

10. May K, Rosenlöf L, Olsson MG, Centlow M, Mörgelin M, Larsson I, et al. Perfusion of human placenta with hemoglobin introduces preeclampsia-like injuries that are prevented by α1-microglobulin. Placenta. 2011;32(4):323–32. Epub 2011/02/26. doi: 10.1016/j.placenta.2011.01.017 21356557.

11. Staff AC, Benton SJ, von Dadelszen P, Roberts JM, Taylor RN, Powers RW, et al. Redefining preeclampsia using placenta-derived biomarkers. Hypertension. 2013;61(5):932–42. doi: 10.1161/HYPERTENSIONAHA.111.00250 23460278.

12. Roberts JM, Taylor RN, Musci TJ, Rodgers GM, Hubel CA, McLaughlin MK. Preeclampsia: an endothelial cell disorder. Am J Obstet Gynecol. 1989;161(5):1200–4. doi: 10.1016/0002-9378(89)90665-0 2589440.

13. Brown MA. The physiology of pre-eclampsia. Clin Exp Pharmacol Physiol. 1995;22(11):781–91. doi: 10.1111/j.1440-1681.1995.tb01937.x 8593732.

14. Redman CW, Sacks GP, Sargent IL. Preeclampsia: an excessive maternal inflammatory response to pregnancy. Am J Obstet Gynecol. 1999;180(2 Pt 1):499–506. doi: 10.1016/s0002-9378(99)70239-5 9988826.

15. Ness RB, Roberts JM. Heterogeneous causes constituting the single syndrome of preeclampsia: a hypothesis and its implications. Am J Obstet Gynecol. 1996;175(5):1365–70. doi: 10.1016/s0002-9378(96)70056-x 8942516.

16. Olsson MG, Centlow M, Rutardóttir S, Stenfors I, Larsson J, Hosseini-Maaf B, et al. Increased levels of cell-free hemoglobin, oxidation markers, and the antioxidative heme scavenger alpha(1)-microglobulin in preeclampsia. Free Radic Biol Med. 2010;48(2):284–91. Epub 2009/10/30. doi: 10.1016/j.freeradbiomed.2009.10.052 19879940.

17. Anderson UD, Olsson MG, Rutardóttir S, Centlow M, Kristensen KH, Isberg PE, et al. Fetal hemoglobin and α1-microglobulin as first- and early second-trimester predictive biomarkers for preeclampsia. Am J Obstet Gynecol. 2011;204(6):520.e1-5. Epub 2011/03/24. doi: 10.1016/j.ajog.2011.01.058 21439542.

18. Gram M, Anderson UD, Johansson ME, Edström-Hägerwall A, Larsson I, Jälmby M, et al. The Human Endogenous Protection System against Cell-Free Hemoglobin and Heme Is Overwhelmed in Preeclampsia and Provides Potential Biomarkers and Clinical Indicators. PLoS One. 2015;10(9):e0138111. Epub 2015/09/14. doi: 10.1371/journal.pone.0138111 26368565; PubMed Central PMCID: PMC4569570.

19. Anderson UD, Gram M, Ranstam J, Thilaganathan B, Kerström B, Hansson SR. Fetal hemoglobin, α1-microglobulin and hemopexin are potential predictive first trimester biomarkers for preeclampsia. Pregnancy Hypertens. 2016;6(2):103–9. Epub 2016/04/13. doi: 10.1016/j.preghy.2016.02.003 27155336.

20. Centlow M, Carninci P, Nemeth K, Mezey E, Brownstein M, Hansson SR. Placental expression profiling in preeclampsia: local overproduction of hemoglobin may drive pathological changes. Fertil Steril. 2008;90(5):1834–43. Epub 2007/12/31. doi: 10.1016/j.fertnstert.2007.09.030 18166190; PubMed Central PMCID: PMC2628488.

21. Jeney V, Balla J, Yachie A, Varga Z, Vercellotti GM, Eaton JW, et al. Pro-oxidant and cytotoxic effects of circulating heme. Blood. 2002;100(3):879–87. doi: 10.1182/blood.v100.3.879 12130498.

22. Brook A, Hoaksey A, Gurung R, Yoong EEC, Sneyd R, Baynes GC, et al. Cell-free hemoglobin in the fetoplacental circulation: a novel cause of fetal growth restriction? FASEB J. 2018;32(10):5436–46. Epub 2018/05/03. doi: 10.1096/fj.201800264R 29723064.

23. Tolosano E, Fagoonee S, Morello N, Vinchi F, Fiorito V. Heme scavenging and the other facets of hemopexin. Antioxid Redox Signal. 2010;12(2):305–20. doi: 10.1089/ars.2009.2787 19650691.

24. Smith A, McCulloh RJ. Hemopexin and haptoglobin: allies against heme toxicity from hemoglobin not contenders. Front Physiol. 2015;6:187. Epub 2015/06/30. doi: 10.3389/fphys.2015.00187 26175690; PubMed Central PMCID: PMC4485156.

25. Balla G, Vercellotti GM, Muller-Eberhard U, Eaton J, Jacob HS. Exposure of endothelial cells to free heme potentiates damage mediated by granulocytes and toxic oxygen species. Lab Invest. 1991;64(5):648–55. 2030579.

26. Bakker WW, Donker RB, Timmer A, van Pampus MG, van Son WJ, Aarnoudse JG, et al. Plasma hemopexin activity in pregnancy and preeclampsia. Hypertens Pregnancy. 2007;26(2):227–39. doi: 10.1080/10641950701274896 17469012.

27. Allhorn M, Berggård T, Nordberg J, Olsson ML, Akerström B. Processing of the lipocalin alpha(1)-microglobulin by hemoglobin induces heme-binding and heme-degradation properties. Blood. 2002;99(6):1894–901. doi: 10.1182/blood.v99.6.1894 11877257.

28. Olsson MG, Olofsson T, Tapper H, Akerstrom B. The lipocalin alpha1-microglobulin protects erythroid K562 cells against oxidative damage induced by heme and reactive oxygen species. Free Radic Res. 2008;42(8):725–36. doi: 10.1080/10715760802337265 18712632.

29. Anderson UD, Jälmby M, Faas MM, Hansson SR. The hemoglobin degradation pathway in patients with preeclampsia—Fetal hemoglobin, heme, heme oxygenase-1 and hemopexin—Potential diagnostic biomarkers? Pregnancy Hypertens. 2018. Epub 2018/02/15. doi: 10.1016/j.preghy.2018.02.005 29530745.

30. Gunnarsson R, Åkerström B, Hansson SR, Gram M. Recombinant alpha-1-microglobulin: a potential treatment for preeclampsia. Drug Discov Today. 2017;22(4):736–43. Epub 2016/12/14. doi: 10.1016/j.drudis.2016.12.005 27988357.

31. Wester-Rosenlöf L, Casslén V, Axelsson J, Edström-Hägerwall A, Gram M, Holmqvist M, et al. A1M/α1-microglobulin protects from heme-induced placental and renal damage in a pregnant sheep model of preeclampsia. PLoS One. 2014;9(1):e86353. Epub 2014/01/28. doi: 10.1371/journal.pone.0086353 24489717; PubMed Central PMCID: PMC3904882.

32. Nääv Å, Erlandsson L, Axelsson J, Larsson I, Johansson M, Wester-Rosenlöf L, et al. A1M Ameliorates Preeclampsia-Like Symptoms in Placenta and Kidney Induced by Cell-Free Fetal Hemoglobin in Rabbit. PLoS One. 2015;10(5):e0125499. Epub 2015/05/08. doi: 10.1371/journal.pone.0125499 25955715; PubMed Central PMCID: PMC4425457.

33. Erlandsson L, Ducat A, Castille J, Zia I, Kalapotharakos G, Hedström E, et al. Alpha-1 microglobulin as a potential therapeutic candidate for treatment of hypertension and oxidative stress in the STOX1 preeclampsia mouse model. Sci Rep. 2019;9(1):8561. Epub 2019/06/12. doi: 10.1038/s41598-019-44639-9 31189914; PubMed Central PMCID: PMC6561956.

34. Kalapotharakos G, Murtoniemi K, Åkerström B, Hämäläinen E, Kajantie E, Räikkönen K, et al. Plasma Heme Scavengers Alpha-1-Microglobulin and Hemopexin as Biomarkers in High-Risk Pregnancies. Front Physiol. 2019;10:300. Epub 2019/04/04. doi: 10.3389/fphys.2019.00300 31019465; PubMed Central PMCID: PMC6458234.

35. Girchenko P, Hämäläinen E, Kajantie E, Pesonen AK, Villa P, Laivuori H, et al. Prediction and Prevention of Preeclampsia and Intrauterine Growth Restriction (PREDO) study. Int J Epidemiol. 2016. doi: 10.1093/ije/dyw154 27639277.

36. Pihkala J, Hakala T, Voutilainen P, Raivio K. [Characteristic of recent fetal growth curves in Finland]. Duodecim. 1989;105(18):1540–6. 2680445.

37. Akerstrom B, Bratt T, Enghild JJ. Formation of the alpha 1-microglobulin chromophore in mammalian and insect cells: a novel post-translational mechanism? FEBS Lett. 1995;362(1):50–4. Epub 1995/03/27. doi: 10.1016/0014-5793(95)00206-o 7535251.

38. Chen CC, Lu YC, Chen YW, Lee WL, Lu CH, Chen YH, et al. Hemopexin is up-regulated in plasma from type 1 diabetes mellitus patients: Role of glucose-induced ROS. J Proteomics. 2012;75(12):3760–77. Epub 2012/05/08. doi: 10.1016/j.jprot.2012.04.047 22579751.

39. Fernández-Sánchez A, Madrigal-Santillán E, Bautista M, Esquivel-Soto J, Morales-González A, Esquivel-Chirino C, et al. Inflammation, oxidative stress, and obesity. Int J Mol Sci. 2011;12(5):3117–32. Epub 2011/05/13. doi: 10.3390/ijms12053117 21686173; PubMed Central PMCID: PMC3116179.

40. Yang H, Jin X, Kei Lam CW, Yan SK. Oxidative stress and diabetes mellitus. Clin Chem Lab Med. 2011;49(11):1773–82. Epub 2011/08/03. doi: 10.1515/CCLM.2011.250 21810068.

41. Touyz RM. Reactive oxygen species, vascular oxidative stress, and redox signaling in hypertension: what is the clinical significance? Hypertension. 2004;44(3):248–52. Epub 2004/07/19. doi: 10.1161/01.HYP.0000138070.47616.9d 15262903.

42. Lopez-Jaramillo P, Barajas J, Rueda-Quijano SM, Lopez-Lopez C, Felix C. Obesity and Preeclampsia: Common Pathophysiological Mechanisms. Front Physiol. 2018;9:1838. Epub 2018/12/19. doi: 10.3389/fphys.2018.01838 30618843; PubMed Central PMCID: PMC6305943.

43. Olsson MG, Allhorn M, Olofsson T, Akerström B. Up-regulation of alpha1-microglobulin by hemoglobin and reactive oxygen species in hepatoma and blood cell lines. Free Radic Biol Med. 2007;42(6):842–51. Epub 2006/12/22. doi: 10.1016/j.freeradbiomed.2006.12.017 17320766.

44. Redman CW, Staff AC. Preeclampsia, biomarkers, syncytiotrophoblast stress, and placental capacity. Am J Obstet Gynecol. 2015;2015 Oct;213(4 Suppl):S9.e1.


Článek vyšel v časopise

PLOS One


2019 Číslo 12