#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

NAT2 gene polymorphisms and endometriosis risk: A PRISMA-compliant meta-analysis


Autoři: Zhangming Wei aff001;  Mengmeng Zhang aff001;  Xinyue Zhang aff001;  Mingyu Yi aff001;  Xiaomeng Xia aff001;  Xiaoling Fang aff001
Působiště autorů: Department of Obstetrics and Gynecology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China aff001
Vyšlo v časopise: PLoS ONE 14(12)
Kategorie: Research Article
doi: https://doi.org/10.1371/journal.pone.0227043

Souhrn

Objective

Endometriosis is a common chronic, gynecological disease. Despite many studies on the role of N-acetyltransferase 2 (NAT2) in endometriosis, its clinical significance is unclear. In this study, associations between NAT2 phenotypes as well as single nucleotide polymorphisms (SNPs) within NAT2 (i.e. rs1799929, rs1799930, rs1208, and rs1799931) and endometriosis risk were evaluated using a meta-analysis approach.

Methods

Embase, PubMed, ClinicalTrials.gov, CNKI (China National Knowledge Infrastructure), Wanfang databases, Cochrane Library for clinical trials, and Web of Science were searched to identify relevant articles. ORs (odds ratios) and 95% CIs (95% confidence intervals) were used to estimate the associations between NAT2 polymorphisms and endometriosis risk. Heterogeneity among included studies was also assessed. In addition, a subgroup analysis of NAT2 phenotypes and endometriosis risk based on ethnicity was performed.

Results

Nine case-control studies met the inclusion criteria. The odds ratio was 2.30 (95% CI: 1.61–3.28) for the NAT2 slow acetylation phenotype versus the intermediate + fast acetylation phenotype in the Asian population. These results suggest that Asian individuals with the NAT2 slow acetylation phenotype have a 130% increased risk of endometriosis. A significant association was also found for rs1799930 (OR = 0.74; 95% CI, 0.59–0.92), suggesting that individuals with this mutant genotype have a 26% decreased risk of endometriosis.

Conclusions

The rs1799930 mutant genotypes are associated with a decreased risk of endometriosis. No statistically significant associations were found between rs1799931, rs1208, or rs1799929 and endometriosis. Based on a subgroup analysis based on ethnicity, the NAT2 slow acetylation phenotype was found to increase the risk of endometriosis in Asians. No statistically significant associations were found between the NAT2 slow acetylation phenotype and endometriosis risk in Caucasians. Accordingly, NAT2 phenotypes and SNPs are potential biomarkers for the diagnosis and treatment of endometriosis.

Klíčová slova:

Acetylation – Database searching – Enzyme metabolism – Ethnicities – China – Pathogenesis – Publication ethics


Zdroje

1. Anglesio MS, Papadopoulos N, Ayhan A, Nazeran TM, Noe M, Horlings HM, et al. Cancer-Associated Mutations in Endometriosis without Cancer. N Engl J Med. 2017;376(19):1835–48. Epub 2017/05/11. doi: 10.1056/NEJMoa1614814 28489996; PubMed Central PMCID: PMC5555376.

2. Symons LK, Miller JE, Kay VR, Marks RM, Liblik K, Koti M, et al. The Immunopathophysiology of Endometriosis. Trends in molecular medicine. 2018;24(9):748–62. Epub 2018/07/29. doi: 10.1016/j.molmed.2018.07.004 30054239.

3. Brown J, Farquhar C. An overview of treatments for endometriosis. Jama. 2015;313(3):296–7. Epub 2015/01/21. doi: 10.1001/jama.2014.17119 25603001.

4. Sapkota Y, Steinthorsdottir V, Morris AP, Fassbender A, Rahmioglu N, De Vivo I, et al. Meta-analysis identifies five novel loci associated with endometriosis highlighting key genes involved in hormone metabolism. Nature communications. 2017;8:15539. Epub 2017/05/26. doi: 10.1038/ncomms15539 28537267; PubMed Central PMCID: PMC5458088.

5. Rahmioglu N, Nyholt DR, Morris AP, Missmer SA, Montgomery GW, Zondervan KT. Genetic variants underlying risk of endometriosis: insights from meta-analysis of eight genome-wide association and replication datasets. Hum Reprod Update. 2014;20(5):702–16. Epub 2014/03/29. doi: 10.1093/humupd/dmu015 24676469; PubMed Central PMCID: PMC4132588.

6. Chen X, Yan Y, Li P, Yang Z, Qin L, Mo W. Association of GSTP1 -313A/G polymorphisms and endometriosis risk: a meta-analysis of case-control studies. Eur J Obstet Gynecol Reprod Biol. 2013;171(2):362–7. Epub 2013/11/05. doi: 10.1016/j.ejogrb.2013.10.005 24183097.

7. Tong X, Li Z, Wu Y, Fu X, Zhang Y, Fan H. COMT 158G/A and CYP1B1 432C/G polymorphisms increase the risk of endometriosis and adenomyosis: a meta-analysis. Eur J Obstet Gynecol Reprod Biol. 2014;179:17–21. Epub 2014/06/27. doi: 10.1016/j.ejogrb.2014.04.039 24965973.

8. Sengupta D, Guha U, Mitra S, Ghosh S, Bhattacharjee S, Sengupta M. Meta-Analysis of Polymorphic Variants Conferring Genetic Risk to Cervical Cancer in Indian Women Supports CYP1A1 as an Important Associated Locus. Asian Pac J Cancer Prev. 2018;19(8):2071–81. doi: 10.22034/APJCP.2018.19.8.2071 30139066.

9. Hein DW, Doll MA, Fretland AJ, Leff MA, Webb SJ, Xiao GH, et al. Molecular genetics and epidemiology of the NAT1 and NAT2 acetylation polymorphisms. Cancer Epidemiol Biomarkers Prev. 2000;9(1):29–42. Epub 2000/02/10. 10667461.

10. Yuliwulandari R, Susilowati RW, Wicaksono BD, Viyati K, Prayuni K, Razari I, et al. NAT2 variants are associated with drug-induced liver injury caused by anti-tuberculosis drugs in Indonesian patients with tuberculosis. Journal of human genetics. 2016;61(6):533–7. Epub 2016/02/26. doi: 10.1038/jhg.2016.10 26911349.

11. Zgheib NK, Shamseddine AA, Geryess E, Tfayli A, Bazarbachi A, Salem Z, et al. Genetic polymorphisms of CYP2E1, GST, and NAT2 enzymes are not associated with risk of breast cancer in a sample of Lebanese women. Mutation research. 2013;747–748:40–7. Epub 2013/05/01. doi: 10.1016/j.mrfmmm.2013.04.004 23628324.

12. Garcia-Closas M, Malats N, Silverman D, Dosemeci M, Kogevinas M, Hein DW, et al. NAT2 slow acetylation, GSTM1 null genotype, and risk of bladder cancer: results from the Spanish Bladder Cancer Study and meta-analyses. Lancet. 2005;366(9486):649–59. Epub 2005/08/23. doi: 10.1016/S0140-6736(05)67137-1 16112301; PubMed Central PMCID: PMC1459966.

13. Lao X, Chen Z, Qin A. p53 Arg72Pro polymorphism confers the susceptibility to endometriosis among Asian and Caucasian populations. Arch Gynecol Obstet. 2016;293(5):1023–31. doi: 10.1007/s00404-015-3923-7 26493553.

14. Fayez D, Saliminejad K, Irani S, Kamali K, Memariani T, Khorram Khorshid HR. Arylamine N-acetyltransferase 2 Polymorphisms and the Risk of Endometriosis. Avicenna J Med Biotechnol. 2018;10(3):163–7. 30090210; PubMed Central PMCID: PMC6064003.

15. Zhang M, Wang S, Wilffert B, Tong R, van Soolingen D, van den Hof S, et al. The association between the NAT2 genetic polymorphisms and risk of DILI during anti-TB treatment: a systematic review and meta-analysis. Br J Clin Pharmacol. 2018. doi: 10.1111/bcp.13722 30047605.

16. Wang T, Marei HE. Landscape of NAT2 polymorphisms among breast cancer. Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie. 2016;77:191–6. doi: 10.1016/j.biopha.2015.12.011 26796284.

17. Deguchi M, Yoshida S, Kennedy S, Ohara N, Motoyama S, Maruo T. Lack of association between endometriosis and N-acetyl transferase 1 (NAT1) and 2 (NAT2) polymorphisms in a Japanese population. J Soc Gynecol Investig. 2005;12(3):208–13. doi: 10.1016/j.jsgi.2005.01.008 15784508.

18. Gibbons A. Dioxin tied to endometriosis. Science (New York, NY). 1993;262(5138):1373. Epub 1993/11/26. doi: 10.1126/science.8248776 8248776.

19. Koninckx PR, Braet P, Kennedy SH, Barlow DH. Dioxin pollution and endometriosis in Belgium. Hum Reprod. 1994;9(6):1001–2. Epub 1994/06/01. doi: 10.1093/oxfordjournals.humrep.a138623 7962366.

20. Matsuzaka Y, Kikuti YY, Goya K, Suzuki T, Cai LY, Oka A, et al. Lack of an association human dioxin detoxification gene polymorphisms with endometriosis in Japanese women: results of a pilot study. Environ Health Prev Med. 2012;17(6):512–7. doi: 10.1007/s12199-012-0281-y 22547312; PubMed Central PMCID: PMC3493626.

21. Mayani A, Barel S, Soback S, Almagor M. Dioxin concentrations in women with endometriosis. Hum Reprod. 1997;12(2):373–5. Epub 1997/02/01. doi: 10.1093/humrep/12.2.373 9070728.

22. Rier SE, Martin DC, Bowman RE, Dmowski WP, Becker JL. Endometriosis in rhesus monkeys (Macaca mulatta) following chronic exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin. Fundamental and applied toxicology: official journal of the Society of Toxicology. 1993;21(4):433–41. Epub 1993/11/01. doi: 10.1006/faat.1993.1119 8253297.

23. Sofo V, Gotte M, Lagana AS, Salmeri FM, Triolo O, Sturlese E, et al. Correlation between dioxin and endometriosis: an epigenetic route to unravel the pathogenesis of the disease. Arch Gynecol Obstet. 2015;292(5):973–86. Epub 2015/04/30. doi: 10.1007/s00404-015-3739-5 25920525.

24. Hosseini E, Mehraein F, Shahhoseini M, Karimian L, Nikmard F, Ashrafi M, et al. Epigenetic alterations of CYP19A1 gene in Cumulus cells and its relevance to infertility in endometriosis. J Assist Reprod Genet. 2016;33(8):1105–13. Epub 2016/05/12. doi: 10.1007/s10815-016-0727-z 27167072; PubMed Central PMCID: PMC4974225.

25. Guo SW. The association of endometriosis risk and genetic polymorphisms involving dioxin detoxification enzymes: a systematic review. Eur J Obstet Gynecol Reprod Biol. 2006;124(2):134–43. doi: 10.1016/j.ejogrb.2005.10.002 16289302.

26. Babu KA, Rao KL, Reddy NG, Kanakavalli MK, Zondervan KT, Deenadayal M, et al. N-acetyl transferase 2 polymorphism and advanced stages of endometriosis in South Indian women. Reprod Biomed Online. 2004;9(5):533–40. doi: 10.1016/s1472-6483(10)61638-0 15588473.

27. Baranova H, Canis M, Ivaschenko T, Albuisson E, Bothorishvilli R, Baranov V, et al. Possible involvement of arylamine N-acetyltransferase 2, glutathione S-transferases M1 and T1 genes in the development of endometriosis. Mol Hum Reprod. 1999;5(7):636–41. doi: 10.1093/molehr/5.7.636 10381818.

28. Pearce CL, Templeman C, Rossing MA, Lee A, Near AM, Webb PM, et al. Association between endometriosis and risk of histological subtypes of ovarian cancer: a pooled analysis of case-control studies. The Lancet Oncology. 2012;13(4):385–94. Epub 2012/03/01. doi: 10.1016/S1470-2045(11)70404-1 22361336; PubMed Central PMCID: PMC3664011.

29. Horikoshi M, Beaumont RN, Day FR, Warrington NM, Kooijman MN, Fernandez-Tajes J, et al. Genome-wide associations for birth weight and correlations with adult disease. Nature. 2016;538(7624):248–52. Epub 2016/09/30. doi: 10.1038/nature19806 27680694; PubMed Central PMCID: PMC5164934.

30. Rafnar T, Gunnarsson B, Stefansson OA, Sulem P, Ingason A, Frigge ML, et al. Variants associating with uterine leiomyoma highlight genetic background shared by various cancers and hormone-related traits. Nature communications. 2018;9(1):3636. Epub 2018/09/09. doi: 10.1038/s41467-018-05428-6 30194396; PubMed Central PMCID: PMC6128903.

31. Wang Y. Correlation between NAT2 gene and inheritance of endometriosis. Chin Mod Doctor. 2009;47(10):146–7. doi: 10.3969/j.issn.1673-9701.2009.10.088

32. Dubinskaia ED, Gasparov AS, Fedorova TA, Lapteva NV. [Role of the genetic factors, detoxication systems and oxidative stress in the pathogenesis of endometriosis and infertility (review)]. Vestn Ross Akad Med Nauk. 2013;(8):14–9. 24340639.

33. Ivashchenko TE, Shved N, Kramareva NA, Ailamazian EK, Baranov VS. [Analysis of the polymorphic alleles of genes encoding phase 1 and phase 2 detoxication enzymes in patients with endometriosis]. Genetika. 2003;39(4):525–9. 12760253.

34. Nakago S, Hadfield RM, Zondervan KT, Mardon H, Manek S, Weeks DE, et al. Association between endometriosis and N-acetyl transferase 2 polymorphisms in a UK population. Mol Hum Reprod. 2001;7(11):1079–83. Epub 2001/10/25. doi: 10.1093/molehr/7.11.1079 11675475.

35. Cao J, Yao L, Zhang A, wang G. Study on the relationship between endometriosis and N—acetyltransferase 2 genetic polymorphism. Maternal and Child Health Care of China. 2007;(06):822–4. doi: 10.3969/j.issn.1001-4411.2007.06.074

36. Chen L. Association between NAT2 gene polymorphism and genetic susceptibility to endometriosis [Dissertation]: Zhejiang University; 2003.

37. Chen X. Polymorphism of NAT2 gene in endometriosis. Chin Med Herald. 2009;6(27):134. doi: 10.3969/j.issn.1673-7210.2009.27.081

38. Bradley CA. Reproductive endocrinology: Elagolix in endometriosis. Nature reviews Endocrinology. 2017;13(8):439. Epub 2017/06/18. doi: 10.1038/nrendo.2017.74 28621340.

39. Hapangama DK, Kamal A, Saretzki G. Implications of telomeres and telomerase in endometrial pathology. Hum Reprod Update. 2017;23(2):166–87. Epub 2016/12/17. doi: 10.1093/humupd/dmw044 27979878; PubMed Central PMCID: PMC5850744.

40. Kvaskoff M, Mu F, Terry KL, Harris HR, Poole EM, Farland L, et al. Endometriosis: a high-risk population for major chronic diseases? Hum Reprod Update. 2015;21(4):500–16. Epub 2015/03/15. doi: 10.1093/humupd/dmv013 25765863; PubMed Central PMCID: PMC4463000.

41. Vercellini P, Vigano P, Somigliana E, Fedele L. Endometriosis: pathogenesis and treatment. Nature reviews Endocrinology. 2014;10(5):261–75. Epub 2013/12/25. doi: 10.1038/nrendo.2013.255 24366116.

42. Roshandel D, Klein R, Klein BE, Wolffenbuttel BH, van der Klauw MM, van Vliet-Ostaptchouk JV, et al. New Locus for Skin Intrinsic Fluorescence in Type 1 Diabetes Also Associated With Blood and Skin Glycated Proteins. Diabetes. 2016;65(7):2060–71. Epub 2016/05/22. doi: 10.2337/db15-1484 27207532; PubMed Central PMCID: PMC4915582.

43. Painter JN, O'Mara TA, Morris AP, Cheng THT, Gorman M, Martin L, et al. Genetic overlap between endometriosis and endometrial cancer: evidence from cross-disease genetic correlation and GWAS meta-analyses. Cancer Med. 2018;7(5):1978–87. doi: 10.1002/cam4.1445 29608257; PubMed Central PMCID: PMC5943470.

44. Christofolini DM, Mafra FA, Catto MC, Bianco B, Barbosa CP. New candidate genes associated to endometriosis. Gynecol Endocrinol. 2018:1–4. doi: 10.1080/09513590.2017.1381682 30044155.

45. Laisk T, Kukuskina V, Palmer D, Laber S, Chen CY, Ferreira T, et al. Large scale meta-analysis highlights the hypothalamic-pituitary-gonadal (HPG) axis in the genetic regulation of menstrual cycle length. Hum Mol Genet. 2018. doi: 10.1093/hmg/ddy317 30202859.

46. Uimari O, Rahmioglu N, Nyholt DR, Vincent K, Missmer SA, Becker C, et al. Genome-wide genetic analyses highlight mitogen-activated protein kinase (MAPK) signaling in the pathogenesis of endometriosis. Hum Reprod. 2017;32(4):780–93. doi: 10.1093/humrep/dex024 28333195; PubMed Central PMCID: PMC5400041.

47. Farland LV, Eliassen AH, Tamimi RM, Spiegelman D, Michels KB, Missmer SA. History of breast feeding and risk of incident endometriosis: prospective cohort study. BMJ (Clinical research ed). 2017;358:j3778. Epub 2017/08/31. doi: 10.1136/bmj.j3778 28851765; PubMed Central PMCID: PMC5574033 at www.icmje.org/coi_disclosure.pdf (available on request from the corresponding author) and declare: support from the Harvard T H Chan School of Public Health, Eunice Kennedy Shriver National Institute of Child Health and Human Development, and National Cancer Institute for the submitted work; no financial relationships with any organizations that might have an interest in the submitted work in the previous three years; no other relationships or activities that could appear to have influenced the submitted work.


Článek vyšel v časopise

PLOS One


2019 Číslo 12
Nejčtenější tento týden
Nejčtenější v tomto čísle
Kurzy

Zvyšte si kvalifikaci online z pohodlí domova

KOST
Koncepce osteologické péče pro gynekology a praktické lékaře
nový kurz
Autoři: MUDr. František Šenk

Sekvenční léčba schizofrenie
Autoři: MUDr. Jana Hořínková

Hypertenze a hypercholesterolémie – synergický efekt léčby
Autoři: prof. MUDr. Hana Rosolová, DrSc.

Svět praktické medicíny 5/2023 (znalostní test z časopisu)

Imunopatologie? … a co my s tím???
Autoři: doc. MUDr. Helena Lahoda Brodská, Ph.D.

Všechny kurzy
Kurzy Podcasty Doporučená témata Časopisy
Přihlášení
Zapomenuté heslo

Zadejte e-mailovou adresu, se kterou jste vytvářel(a) účet, budou Vám na ni zaslány informace k nastavení nového hesla.

Přihlášení

Nemáte účet?  Registrujte se

#ADS_BOTTOM_SCRIPTS#