A quantum chemical approach representing a new perspective concerning agonist and antagonist drugs in the context of schizophrenia and Parkinson’s disease


Autoři: Ana Martínez aff001;  Ilich A. Ibarra aff003;  Rubicelia Vargas aff002
Působiště autorů: Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Circuito Exterior S. N., Ciudad Universitaria, CDMX, México aff001;  Departamento de Química, División de Ciencias Básicas e Ingeniería, Universidad Autónoma Metropolitana-Iztapalapa, CDMX, México aff002;  Laboratorio de Fisicoquímica y Reactividad de Superficies (LaFReS), Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, CDMX, Mexico aff003
Vyšlo v časopise: PLoS ONE 14(12)
Kategorie: Research Article
doi: 10.1371/journal.pone.0224691

Souhrn

Schizophrenia and Parkinson’s disease can be controlled with dopamine antagonists and agonists. In order to improve the understanding of the reaction mechanism of these drugs, in this investigation we present a quantum chemical study of 20 antagonists and 10 agonists. Electron donor acceptor capacity and global hardness are analyzed using Density Functional Theory calculations. Following this theoretical approach, we provide new insights into the intrinsic response of these chemical species. In summary, antagonists generally prove to be better electron acceptors and worse electron donors than dopamine, whereas agonists present an electron donor-acceptor capacity similar to that of dopamine. The chemical hardness is a descriptor that captures the resistance of a chemical compound to change its number of electrons. Within this model, harder molecules are less polarizable and more stable systems. Our results show that the global hardness is similar for dopamine and agonists whilst antagonists present smaller values. Following the Hard and Soft Acid and Bases principle, it is possible to conclude that dopamine and agonists are hard bases while antagonists are soft acids, and this can be related to their activity. From the electronic point of view, we have evolved a new perspective for the classification of agonist and antagonist, which may help to analyze future results of chemical interactions triggered by these drugs.

Klíčová slova:

Adverse reactions – Antipsychotics – Dopamine – Parkinson disease – Schizophrenia – Electron donors – Electron acceptors – Density functional theory


Zdroje

1. Perala J, Suvisaari J, Saarni SI, Kuoppasalmi K, Isometsa E, Pirkola E et al. Lifetime prevalence of psychotic and bipolar I disorders in a general population. Arch Gen Psychiatry. 2007; 64: 19–28.

2. Diagnostic and Statistical Manual of Mental Disorders, 5th ed; 2013, American Psychiatric Association, Arlington, VA.

3. Volk DW, Lewis DA. Schizophrenia. In: Rosenberg RN, Pascaul J M, editors. Rosenberg’s Molecular and Genetic Basis of Neurological and Psychiatric Disease: Academic Press; 2014. Pp. 1293–1299.

4. Konopaske GT, Coyle JT. Schizophrenia. In: Zigmond MJ, Coyle JT, Rowland L, editors. Neurobiology of Brain Disorders: Biological Basis of Neurological and Psychiatric Disorders: Academic Press: 2015. Pp. 639–654.

5. Fröhlich F. Schizophrenia. In: Network Neuroscience: Academic Press; 2016. Pp. 309–318.

6. Zielasek J, Gaebel W. Schizophrenia. In: Wright JD, editor. International Encyclopedia of the Social & Behavioral Sciences: Elsevier; 2015. Pp. 9–15.

7. Hosák L, Hosakova J. The complex etiology of schizophrenia—general state of the art, Neuro Endocrinol Lett. 2015; 36: 631–637.

8. Rădulescu A. A multi-etiology model of systemic degeneration in schizophrenia, J Theor Biol. 2009; 259: 269–279.

9. Walter E, Kestler L, Bollini A, Hochman KM., Schizophrenia: etiology and course, Annu Rev Psychol. 2004; 55: 401–430.

10. Dean B. Neurochemistry of schizophrenia: the contribution of neuroimaging postmodern pathology and neurochemistry in schizophrenia. Curr Top Med Chem. 2012; 12: 2375–2392. doi: 10.2174/156802612805289935 23279177

11. Li P, Snyder GL, Vanover KE. Dopamine targeting drugs for the treatment of schizophrenia: past, present and future. Curr Top Med Chem. 2016; 16: 3385–3403. doi: 10.2174/1568026616666160608084834 27291902

12. Wickelgren I. A new route to treating schizophrenia? Science. 1998; 281: 1264–1265.

13. Marino MJ, Knutsen LJ, Williams M. Emerging opportunities for antipsychotic drug discovery in the postgenomic era. J Med Chem. 2008; 51: 1077–1107.

14. Forray C, Buller R. Challenges and opportunities for the development of new antipsychotic drugs. Biochem Pharm. 2017; 143: 10–24.

15. Delay J, Deniker P, Harl JM. Therapeutic method derived from hiberno-therapy in excitation and agitation states. Ann Med Psychol. 1952; 110: 267–273.

16. Chauhan A, Mittal A, Arora PK. Atypical antipsychotics from scratch to the present. J Pharm Sci Research. 2013; 4: 184–204.

17. Potkin SG, Saha AR, Kujawa MJ, Carson WH, Ali M, Stock E, et al. Aripiprazole, and antipsychotic with a novel mechanism of action, and risperidone vs placebo in patients with schizophrenia and schizoaffective disorder. Arch Gen Psych. 2003; 60: 681–690.

18. Burris KD, Molski TF, Xu C, Ryan E, Tottori K, Kikuchi T, et al. Aripiprazole, a novel antipsychotic, is a high-affinity partial agonist at human dopamine D2 receptors. J Pharmacol Exp Ther. 2002; 302: 381–389.

19. Mauri MC, Paletta S, Maffini M, Colasanti A, Dragogna F, Di Pace C, et al. Clinical pharmacology of atypical antipsychotics: an update. EXCLI J. 2014; 13: 1163–1191. 26417330

20. Kapur S, Seeman P. Does fast dissociation from the Dopamine D2 receptor explain the action of atypical antipsychotics?: A new hypothesis. Am J Psych. 2001; 158: 360–369.

21. Geddes J, Freemantle N, Harrison P, Bebbington P. Atypical antipsychotics in the treatment of schizophrenia: systematic overview and meta-regression analysis. Br Med J. 2000; 321:1371–1376.

22. Ananth J, Burgoyne KS, Gadasalli R, Aquino S. How do the atypical antipsychotics work?. J Psych Neurosci. 2001; 26: 385–394.

23. Seeman P. Atypical antipsychotics: mechanism of action. Can J Psych. 2002; 47: 27–38.

24. Horacek J, Bubenikova-Valesova V, Kopecek M, Palenicek T, Dockery C, Mohr P, et al. Mechanism of action of atypical antipsychotic drugs and the neurobiology of schizophrenia, CNS Drugs. 2006; 20: 389–409.

25. Miyamoto S, Duncan GE, Marx CE, Lieberman JA. Treatments for schizophrenia: a critical review of pharmacology and mechanisms of action of antipsychotic drugs. Molec Psych. 2005; 10: 79–104.

26. Stahl SM, Shayegan DK. The psychopharmacology of ziprasidone: receptor-binding properties and real-world psychiatric practice. J Clin Psych. 2003; 64: 6–12.

27. Stepnicki P, Kondej M, Kaczor A. Current concepts and treatments of schizophrenia. Molecules. 2018; 23: 2087.

28. Laborit H, Huguenard P, Aullaume R. Un nouveau stabilisateur végétatif (le 4560 R.P.). Press Méd. 1952; 60: 206–208.

29. López-Muñoz F, Alamo C, Cuenca E, Shen WW, Clervoy P, Rubio G. History of the discovery and clinical introduction of chlorpromazine. Annals Clin Psych. 2014; 17: 113–135.

30. Mitchell P. Chlorpromazine turns forty. Aust & New Zealand J Psychiatry. 1993; 27: 370–373.

31. Rosenbloom M. Chlorpromazine and the psychopharmacologic revolution. J Am Med Assoc. 2002; 287: 1860–1861.

32. Boyd-Kimball D, Gonczy K, Lewis B, Mason T, Siliko N, Wolfe J. Classics in chemical neuroscience: chlorpromazine. ACS Chem Neurosci. 2018 doi: 10.1021/acschemneuro.8b00258 29929365

33. Meltzer HY, Bastani B, Ramirez L, Matsubara S. Clozapine: new research on efficacy and mechanism of action. Eur Arch Psych Neurol Sci. 1989; 238: 332–339.

34. Wenthur CJ, Lindsley CW. Classics in chemical neuroscience: clozapine. ACS Chem Neurosci. 2013; 4: 1018–1025. doi: 10.1021/cn400121z 24047509

35. Seeman P. Clozapine, a fast-off-D2 antipsychotic. ACS Chem Neurosci. 2014; 5: 24–29. doi: 10.1021/cn400189s 24219174

36. Chopko TC, Lindsley CW. Classics in chemical neuroscience: risperidone. ACS Chem Neurosci. 2018; 9: 1520–1529.

37. Tyler MW, Zaldivar-Diez J, Haggarty SJ. Classics in chemical neuroscience: haloperidol. ACS Chem Neurosci. 2017; 8: 444–453.

38. Birkmayer W, Hornykiewicz O. The effect of l-3,4-dihydrophenylalanine (= DOPA) on akinesis in parkinsonism. Parkinsonism Relat Disord. 1998; 4: 59–60.

39. Cotzias GC, Papavasiliou PS, Gellene R. Modifications of Parkinsonism-chronic treatment with L-dopa. Engl J Med. 1969; 280: 337–345.

40. Marsden CD, Parkes JD. “On-off” effects in patients with Parkinson’s disease on chronic levodopa therapy. Lancet. 1976; 1: 292–296.

41. Fahn S. Is levodopa toxic?. Neurology. 1996; 47: 184–195.

42. Olanow CW. Oxidation reactions in Parkinson´s disease. Neurology. 1990; 40: 37–39.

43. Dutta AKLW. Existing dopaminergic therapies for Parkinson’s disease. Expert Opin Ther Pat. 2006; 16: 1613–1625.

44. Zou L, Xu J, Jankovic J, He Y, Appel SH, Le W. Pramipexole inhibits lipid peroxidation and reduces injury in the substantia nigra induced by the dopaminergic neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine in C57BL/6 mice. Neurosci Lett. 2000; 281: 167–170.

45. Ramírez AD, Wong K, Menniti FS. Pramipexole inhibits MPTP toxicity in mice by dopamine D3 receptor dependent and independent mechanisms. Eur J Pharmacol. 2003; 475: 29–35.

46. Kalani MY, Vaidehi N, Hall SE, Trabanino RJ, Freddolino PL, Kalani MA, et al. The predicted 3D structure of the human D2 dopamine receptor and the binding site and binding affinities for agonists and antagonists. Proc Natl Acad Sci USA. 2004; 101: 3815–3820.

47. Angelina EL, Andujar SA, Tosso RD, Enriz RD, Peruchena NM. Non-covalent interactions in receptor-ligand complexes. A study based on the electron charge density. J Phys Org Chem. 2014; 27: 128–134.

48. Salmas RE, Serhat IY, Durdagi S, Stein M, Yurtsever M. A QM protein-ligand investigation of antipsychotic drugs with dopamine D2 Receptor (D2R). J Biomol Struc Dyn. 2018; 36: 2668–2677.

49. Fu D, Ballesteros JA, Weinstein H, Chen J, Javitch JA. Residues in the seventh membrane-spanning segment of the dopamine D2 receptor accessible in the binding-site crevice. Biochem. 1996; 35: 11278–11285.

50. Javitch JA, Ballesteros JA, Weinstein H, Chen J. A cluster of aromatic residues in the sixth membrane-spanning segment of the dopamine D2 receptor is accessible in the binding-site crevice. Biochem. 1998; 37: 998–1006.

51. Wiens BL, Nelson CS, Neve KA. Contribution of serine residues to constitutive and agonist induced signaling via the D2S dopamine receptor: Evidence for multiple, agonist-specific active conformations. Mol Pharmac. 1998; 54: 435–444.

52. Sukalovic V, Soskic V, Kostic-Rajaciv S. Modeling of dopamine D2 receptor- overview of 35-year evolution. Curr Med Chem. 2015; 22: 2972–2990.

53. Platania CBM, Salomone S, Leggio GM, Drago F, Bucolo F. Homology modeling of dopamine D2 and D3 receptors: molecular dynamics refinement and docking evaluation, Plos ONE. 2012; 7: e44316. doi: 10.1371/journal.pone.0044316 22970199

54. Hjerde E, Dahl SG, Sylte I. Atypical and typical antipsychotic drug interactions with the dopamine D2 receptor. Eur J Med Chem. 2005; 40: 185–194.

55. Santana L, Uriarte E, Fall Y, Teijeira M, Teran C, García-Martínez E, et al. Synthesis and structure reactivity relationships of new arylpiperazines: para substitution with electron-withdrawing groups decrease binding to 5-HT1A and D2A receptors. Eur J Med Chem. 2002; 37: 503–510.

56. Bali A, Sharma K, Bhalla A, Bala S, Reddy D, Synthesis, evaluation and computational studies on a series of acetophenone based 1-(aryloxypropyl)-4-(chloroaryl) piperazines as potential atypical antipsychotics. Eur J Med Chem. 2010; 45: 2656–2662.

57. Pearson RG. Chemical hardness: applications from molecules to Solids, Wiley-VCH, Oxford; 1997.

58. Pearson RG. Hard and Soft Acids and Bases. J Am Chem Soc. 1963; 85: 3533–3539.

59. Pearson RG. Hard and soft acids and bases, HSAB, part 1: Fundamental principles. J Chem Educ. 1968; 45: 581–586.

60. Parr RG, Pearson RG. Absolute hardness: companion parameter to absolute electronegativity. J Am Chem Soc. 1983;105: 7512–7516.

61. Gázquez JL, Cedillo A, Vela A. Electrodonating and electroaccepting powers. J Phys Chem A. 2007; 111: 1966–1970.

62. Gázquez JL. Perspectives on the density functional theory of chemical reactivity. J Mex Chem Soc. 2008; 52: 3–10.

63. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, et al. Gaussian 09. Revision A.08. 2009. Inc. Wallingford, CT.

64. Zhao Y, Truhlar DG. The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theor Chem Acc. 2008; 120: 215–241.

65. Petersson GA, Bennett A, Tensfeldt TG, Al-Laham MA, Shirley WA, A complete basis set model chemistry. I. The total energies of closed-shell atoms and hydrides of the first-row atoms. J Chem Phys. 1988; 89: 2193–2218.

66. Petersson GA; Al-Laham MA. A complete basis set model chemistry. II. Open-shell systems and the total energies of the first-row atoms. J Chem Phys. 1991; 94: 6081–6090.

67. McLean AD, Chandler GS. Contracted Gaussian-basis sets for molecular calculations. 1. 2nd row atoms, Z = 11–18. J Chem Phys. 1980; 72: 5639–5648.

68. Raghavachari K, Binkley JS, Seeger R, Pople JA, Self-Consistent Molecular Orbital Methods. XX. Basis set for correlated wave-functions. J Chem Phys. 1980; 72: 650–654.

69. Marenich AV, Cramer CJ, Truhlar DG. Universal solvation model base on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions. J Phys Chem B. 2009; 113: 6378–6396. doi: 10.1021/jp810292n 19366259

70. National Center for Biotechnology Information. PubChem Compound Database, 2017. National Center for Biotechnology Information. PubChem Compound Database; CID = 4926, https://pubchem.ncbi.nlm.nih.gov/compound/4926 (accessed July 28, 2018). Kim S, Thiessen PA, Bolton EE, Chen J, Fu G, Gindulyte A, Han L, He J, He S, Shoemaker BA, Wang J, Yu B, Zhang J, Bryant SH (2016) PubChem Substance and Compound databases. Nucleic Acids Res. Jan 4; 44(D1):D1202–13. Epub (2015) Sep 22 [doi: 10.1093/nar/gkv951 26400175].

71. Martínez A, Rodríguez-Gironés MA, Barbosa A, Costas M. Donator acceptor map for carotenoids, melatonin and vitamins. J Phys Chem A. 2008; 112: 9037–9042.

72. Martínez A. Donator acceptor map of psittacofulvins and anthocyanins: are they good antioxidant substances?. J Phys Chem B. 2009; 113: 4915–4921.

73. Cerón-Carrasco JP, Bastida A, Requena A, Zuñiga J, Miguel B. A theoretical study of the reaction of ß-carotene with the nitrogen dioxide radical in solution. J Phys Chem B. 2010; 114: 4366–4372.

74. Pillegowda M, Periyasamy G. DFT studies on interaction between bimetallic [Au2M] clusters and cellobiose. Comput Theor Chem. 2018; 1129: 26–36.

75. Alfaro RAD Z. Gómez-Sandoval Z, Mammino L. Evaluation of the antiradical activity of hyperjovinol-A utilizing donor-acceptor maps. J Mol Model. 2014; 20: 2337.

76. Koch EC. Acid-Base interactions in energetic materials: I. The Hard and Soft Acids and Bases (HSAB) principle-insights to reactivity and sensitivity of energetic materials. Prop Expl Pyrotech. 2005; 30: 5.


Článek vyšel v časopise

PLOS One


2019 Číslo 12