Stochasticity and non-additivity expose hidden evolutionary pathways to cooperation

Autoři: Sarah E. Fumagalli aff001;  Sean H. Rice aff001
Působiště autorů: Department of Biological Sciences, Texas Tech University, Lubbock, Texas, United States of America aff001
Vyšlo v časopise: PLoS ONE 14(12)
Kategorie: Research Article


Cooperation is widespread across the tree of life, with examples ranging from vertebrates to lichens to multispecies biofilms. The initial evolution of such cooperation is likely to involve interactions that produce non-additive fitness effects among small groups of individuals in local populations. However, most models for the evolution of cooperation have focused on genealogically related individuals, assume that the factors influencing individual fitness are deterministic, that populations are very large, and that the benefits of cooperation increase linearly with the number of cooperative interactions. Here we show that stochasticity and non-additive interactions can facilitate the evolution of cooperation in small local groups. We derive a generalized model for the evolution of cooperation and show that if cooperation reduces the variance in individual fitness (separate from its effect on average fitness), this can aid in the evolution of cooperation through directional stochastic effects. In addition, we show that the potential for the evolution of cooperation is influenced by non-additivity in benefits with cooperation being more likely to evolve when the marginal benefit of a cooperative act increases with the number of such acts. Our model compliments traditional cooperation models (kin selection, reciprocal cooperation, green beard effect, etc.) and applies to a broad range of cooperative interactions seen in nature.

Klíčová slova:

Biofilms – Covariance – Evolutionary processes – Population size – Probability distribution – Random variables – Simulation and modeling – Kin selection


1. Lewin-Epstein O, Aharonov R, Hadany L. Microbes can help explain the evolution of host cooperation. Nat Commun. 2017;8: 1–7. doi: 10.1038/s41467-016-0009-6 28232747

2. Rodrigues AMM, Gardner A. Evolution of Helping and Harming in Viscous Populations When Group Size Varies. Am Nat. 2013;181: 609–622. doi: 10.1086/670031 23594545

3. Taylor PD, Irwin AJ. Overlapping Generations Can Promote Cooperative Behavior. Evolution. 2000;54: 1135–1141. Available: 11005283

4. Van Dyken JD, Wade MJ. Origins of cooperation diversity II: Runaway coevolution of cooperative strategies via “reciprocal niche construction”. Evolution. NIH Public Access; 2012;66: 2498–2513. doi: 10.1111/j.1558-5646.2012.01629.x 22834748

5. Hamilton WDD. The genetical evolution of social behaviour. I. J Theor Biol. 1964;7: 1–16. doi: 10.1016/0022-5193(64)90038-4 5875341

6. Connelly BD, Bruger EL, McKinley PK, Waters CM. Resource abundance and the critical transition to cooperation. J Evol Biol. 2017;30: 750–761. doi: 10.1111/jeb.13039 28036143

7. Kennedy P, Higginson AD, Radford AN, Sumner S. Cooperation in a volatile world. Nature. 2018;555: 359–362. doi: 10.1038/nature25965 29513655

8. Axelrod R, Hammond RA, Grafen A. Cooperation via Kin-Selection Strategies That Rely on Arbitrary Tags with Which They Coevolve. Evolution. 2004;58: 1833–1838. Available: 15446434

9. Fletcher JA, Doebeli M. A simple and general explanation for the evolution of cooperation. Proc R Soc B. 2009;276: 13–19. doi: 10.1098/rspb.2008.0829 18765343

10. Gintis H. The Hitchhiker’s Guide to Cooperation: Gene-culture Coevolution, and the Internalization of Norms. J theor Biol. 2003;220: 407–418. doi: 10.1006/jtbi.2003.3104 12623279

11. Frank SA. Genetics of Mutualism: The Evolution of Cooperation between Species. J Theor Biol. 1994;170: 393–400. doi: 10.1006/jtbi.1994.1200 7996864

12. Smith J, Van Dyken JD, Zee P. A generalization of Hamilton’s rule for the evolution of microbial cooperation. Science. 2010;328: 1700–1703. doi: 10.1126/science.1189675 20576891

13. Wilson DS. Weak Cooperation, Strong Group Selection. Oikos. 1990;59: 135–140.

14. Trivers RL. The Evolution of Reciprocal Cooperation. Q Rev Biol. 1971;46: 35–57. Available:

15. Fletcher JA, Zwick M. Unifying the theories of inclusive fitness and reciprocal cooperation. Am Nat. 2006;168: 252–262. doi: 10.1086/506529 16874634

16. Queller DC. A General Model for Kin Selection. Evolution. 1992;46: 376. doi: 10.1111/j.1558-5646.1992.tb02045.x 28564031

17. Queller DC. Kinship, reciprocity and synergism in the evolution of social behavior. Lett to Nat. 1985;318: 366–367. doi: 10.1038/316507a0

18. Marshall JAR. Generalizations of Hamilton’s rule applied to non-additive public goods games with random group size. Front Ecol Evol. Frontiers; 2014;2: 40. doi: 10.3389/fevo.2014.00040

19. Aviles L, Abbot P, Cutter A. Population ecology, nonlinear dynamics, and social evolution. I. Associations among nonrelatives. Am Nat. 2002;159: 115–127. Available: 18707408

20. Wilson DS. A theory of group selection. Proc Natl Acad Sci. 1975;72: 143–146. doi: 10.1073/pnas.72.1.143 1054490

21. Xavier JB, Foster KR. Cooperation and conflict in microbial biofilms. PNAS. 2007;104: 876–881. doi: 10.1073/pnas.0607651104 17210916

22. Gardner A, West SA, Wild G. The genetical theory of kin selection. J Evol Biol. 2011;24: 1020–1043. doi: 10.1111/j.1420-9101.2011.02236.x 21371156

23. Lehmann L, Perrin N. Cooperation, Dispersal, and Phenotype‐Matching Kin Recognition. Am Nat. 2002;159: 451–468. doi: 10.1086/339458 18707429

24. Chen X, Fu F, Wang L. Interaction stochasticity supports cooperation in spatial Prisoner’s dilemma. Phys Rev E. 2008;78: 051120–7. doi: 10.1103/PhysRevE.78.051120 19113108

25. Nadell CD, Foster KR, Xavier JB. Emergence of spatial structure in cell groups and the evolution of cooperation. PLoS Comput Biol. 2010;6. doi: 10.1371/journal.pcbi.1000716 20333237

26. Fromhage L, Kokko H. Monogamy and haplodiploidy act in synergy to promote the evolution of eusociality. Nat Commun. Nature Publishing Group; 2011;2: 395–397. doi: 10.1038/ncomms1410 21772268

27. Van Dyken JD, Wade MJ. Detecting the Molecular Signature of Social Conflict: Theory and a Test with Bacterial Quorum Sensing Genes. Am Nat. 2012;179: 436–450. doi: 10.1086/664609 22437174

28. Colizzi ES, Hogeweg P. High cost enhances cooperation through the interplay between evolution and self-organisation. BMC Evol Biol. BioMed Central; 2016;16: 31. doi: 10.1186/s12862-016-0600-9 26832152

29. Wilson DS, Pollock GB, Dugatkin LA. Can cooperation evolve in purely viscous populations? Evol Ecol. 1992;6: 331–341. doi: 10.1007/BF02270969

30. Melbinger A, Cremer J, Frey E. The emergence of cooperation from a single mutant during microbial life cycles. J R Soc Interface. 2015;12. doi: 10.1098/rsif.2015.0171 26063816

31. Mitri S, Xavier JB, Foster KR. Social evolution in multispecies biofilms. Proc Natl Acad Sci U S A. 2011;108: 10839–46. doi: 10.1073/pnas.1100292108 21690380

32. Foster KR. Diminishing returns in social evolution: The not-so-tragic commons. J Evol Biol. 2004;17: 1058–1072. doi: 10.1111/j.1420-9101.2004.00747.x 15312078

33. Nowak C, Sasaki A, Taylor C. Emergence of Cooperation and Evolutionary Stability in Finite Populations. Nature. 2004;428: 646–650. doi: 10.1038/nature02414 15071593

34. Zhang Y, Fu F, Wu T, Xie G, Wang L. A tale of two contribution mechanisms for nonlinear public goods. Sci Rep. 2013;3. doi: 10.1038/srep02021 23779102

35. Archetti M, Scheuring I. Coexistence of cooperation and defection in public goods games. Evolution. 2011;65: 1140–1148. doi: 10.1111/j.1558-5646.2010.01185.x 21062277

36. Starrfelt J, Kokko H. Bet-hedging-a triple trade-off between means, variances and correlations. Biol Rev. 2012;87: 742–755. doi: 10.1111/j.1469-185X.2012.00225.x 22404978

37. McLeod DV., Day T. Social evolution under demographic stochasticity. PLoS Comput Biol. Public Library of Science; 2019;15: e1006739. doi: 10.1371/journal.pcbi.1006739 30716064

38. Gillespie JH. Natural selection for within-generation variance in offspring number. Genetics. 1974;2: 601–606.

39. Armitage KB, Schwartz OA. Social enhancement of fitness in yellow-bellied marmots. Proc Natl Acad Sci. 2000;97: 12149–12152. doi: 10.1073/pnas.200196097 11035771

40. Heinsohn RG. Cooperative enhancement of reproductive success in white-winged choughs. Evol Ecol. 1992;6: 97–114. doi: 10.1007/BF02270705

41. Kiaer LP, Philipp M, Jørgensen RB, Hauser TP. Genealogy, morphology and fitness of spontaneous hybrids between wild and cultivated chicory (Cichorium intybus). Heredity. 2007;99: 112–120. doi: 10.1038/sj.hdy.6800973 17473868

42. Covas R, Du Plessis MA, Doutrelant C. Helpers in colonial cooperatively breeding sociable weavers Philetairus socius contribute to buffer the effects of adverse breeding conditions. Behav Ecol Sociobiol. 2008;63: 103–112. doi: 10.1007/s00265-008-0640-2

43. DeLay LS, Faaborg J, Naranjo J, Paz SM, de Vries T, Parker PG. Paternal care in the cooperatively polyandrous Galapagos Hawk. Condor. 1996;98: 300–311. doi: 10.2307/1369148

44. Downing PA, Cornwallis CK, Griffin AS. Sex, long life and the evolutionary transition to cooperative breeding in birds. Proc R Soc B Biol Sci. The Royal Society; 2015;282: 20151663. doi: 10.1098/rspb.2015.1663 26400743

45. van Gestel J, Weissing FJ, Kuipers OP, Kovács AT. Density of founder cells affects spatial pattern formation and cooperation in Bacillus subtilis biofilms. ISME J. 2014;8: 2069–79. doi: 10.1038/ismej.2014.52 24694715

46. Silk JB, Alberts SC, Altmann J. Social Bonds of Female Baboons Enhance Infant Survival. Science. 2003;302: 1231–1235. doi: 10.1126/science.1088580 14615543

47. Riehl C. Living with strangers: Direct benefits favour non-kin cooperation in a communally nesting bird. Proc R Soc B Biol Sci. The Royal Society; 2011;278: 1728–1735. doi: 10.1098/rspb.2010.1752 21068046

48. Purswani J, Romero-Zaliz RC, Martín-Platero AM, Guisado IM, González-López J, Pozo C. BSocial: Deciphering social behaviors within mixed microbial populations. Front Microbiol. Frontiers; 2017;8: 919. doi: 10.3389/fmicb.2017.00919 28596759

49. Mund A, Diggle SP, Harrison F. The fitness of Pseudomonas aeruginosa quorum sensing signal cheats is influenced by the diffusivity of the environment. MBio. 2017;8: e00353–17. doi: 10.1128/mBio.00353-17 28465424

50. MacColl ADC, Hatchwell BJ. Determinants of lifetime fitness in a cooperative breeder, the long-tailed tit Aegithalos caudatus. J Anim Ecol. 2004;73: 1137–1148. doi: 10.1111/j.0021-8790.2004.00887.x

51. Jungwirth A, Taborsky M. First- and second-order sociality determine survival and reproduction in cooperative cichlids. Proc R Soc B Biol Sci. The Royal Society; 2015;282: 20151971. doi: 10.1098/rspb.2015.1971 26582022

52. Guindre-Parker S, Rubenstein DR. Multiple benefits of alloparental care in a fluctuating environment. R Soc Open Sci. The Royal Society; 2018;5: 172406. doi: 10.1098/rsos.172406 29515910

53. Kramer J, Thesing J, Meunier J. Negative association between parental care and sibling cooperation in earwigs: A new perspective on the early evolution of family life? J Evol Biol. 2015;28: 1299–1308. doi: 10.1111/jeb.12655 25975926

54. Paquet M, Covas R, Chastel O, Parenteau C, Doutrelant C. Maternal Effects in Relation to Helper Presence in the Cooperatively Breeding Sociable Weaver. PLoS One. 2013;8: e59336. doi: 10.1371/journal.pone.0059336 23536872

55. Rice SH, Papadopoulos A. Evolution with stochastic fitness and stochastic migration. PLoS One. 2009;4. doi: 10.1371/journal.pone.0007130 19816580

56. Price GR. Selection and Covariance. Nature. 1970;227: 520–521. doi: 10.1038/227520a0 5428476

57. Rice SH. A stochastic version of the Price equation reveals the interplay of deterministic and stochastic processes in evolution. BMC Evol Biol. 2008;8: 262. doi: 10.1186/1471-2148-8-262 18817569

58. Damore JA, Gore J. Understanding microbial cooperation. J Theor Biol. Academic Press; 2012;299: 31–41. doi: 10.1016/j.jtbi.2011.03.008 21419783

59. Ren D, Madsen JS, Sørensen SJ, Burmølle M. High prevalence of biofilm synergy among bacterial soil isolates in cocultures indicates bacterial interspecific cooperation. ISME J. 2015;9: 81–89. doi: 10.1038/ismej.2014.96 24936766

60. Orr HA. Absolute fitness, relative fitness, and utility. Evolution. 2007;61: 2997–3000. doi: 10.1111/j.1558-5646.2007.00237.x 17971169

61. Traulsen A, Pacheco JM, Nowak MA. Pairwise comparison and selection temperature in evolutionary game dynamics. J Theor Biol. 2007;246: 522–529. doi: 10.1016/j.jtbi.2007.01.002 17292423

62. Platt TG, Bever JD, Fuqua C. A cooperative virulence plasmid imposes a high fitness cost under conditions that induce pathogenesis. Proc R Soc B Biol Sci. The Royal Society; 2011;279: 1691–1699. doi: 10.1098/rspb.2011.2002 22113028

63. Piercey-Normore MD, Athukorala SNP. Interface between fungi and green algae in lichen associations. Botany. 2017;95: 1005–1014. doi: 10.1139/cjb-2017-0037

64. Huang R, Li M, Gregory RL. Bacterial interactions in dental biofilm. J Dent Res. 2011;2: 435–444. doi: 10.4161/viru.2.5.16140 21778817

65. Jansen VAA, Van Baalen M. Cooperation through beard chromodynamics. Nature. 2006;440: 663–666. doi: 10.1038/nature04387 16572169

66. Grafen A. Developments of the Price equation and natural selection under uncertainty. Proc R Soc B Biol Sci. 2000;267: 1223–1227. doi: 10.1098/rspb.2000.1131 10902688

67. Frank SA, Slatkin M. Evolution in a Variable Environment. Am Nat. 1990;136: 244–260.

68. Dragoš A, Kovács ÁT. The Peculiar Functions of the Bacterial Extracellular Matrix. Trends Microbiol. 2017;25: 257–266. doi: 10.1016/j.tim.2016.12.010 28089324

69. Elias S, Banin E. Multi-species biofilms: Living with friendly neighbors. FEMS Microbiol Rev. 2012;36: 990–1004. doi: 10.1111/j.1574-6976.2012.00325.x 22229800

70. Flemming H, Wingender J. The biofilm matrix. Nat Rev Microbiol. 2010;8: 623–33. doi: 10.1038/nrmicro2415 20676145

71. Reed JM, Walters JR. Helper Effects on Variance Components of Fitness in the Cooperatively Breeding Red-Cockaded Woodpecker. Am Ornithol Soc. 1996;113: 608–616.

72. Kolenbrander PE, Andersen RN, David S, Egland PG, Foster JS, Robert J, et al. Communication among Oral Bacteria. Microbiol Mol Microbiol Rev. 2002;66: 486–505. doi: 10.1128/MMBR.66.3.486

73. Soucy SL, Giray T, Roubik DW. Solitary and group nesting in the orchid bee Euglossa hyacinthina (Hymenoptera, Apidae). Insectes Soc. 2003;50: 248–255. doi: 10.1007/s00040-003-0670-8

74. Rubenstein DR. Spatiotemporal environmental variation, risk aversion, and the evolution of cooperative breeding as a bet-hedging strategy. Proc Natl Acad Sci. National Academy of Sciences; 2011;108: 10816–10822. doi: 10.1073/pnas.1100303108 21690415

75. Xavier JB, Kim W, Foster KR. A molecular mechanism that stabilizes cooperative secretions in Pseudomonas aeruginosa. Mol Microbiol. 2011;79: 166–179. doi: 10.1111/j.1365-2958.2010.07436.x 21166901

76. Wallace B. Further Data on the Overdominance of Induced Mutations. Genetics. 1963;48: 633–51. Available:

77. Hartl DL, Cook RD. Balanced polymorphism of quasineutral alleles. Theor Popul Biol. Academic Press; 1973;4: 163–172. doi: 10.1016/0040-5809(73)90026-9

78. Brockhurst MA, Buckling A, Gardner A. Cooperation Peaks at Intermediate Disturbance. Curr Biol. Cell Press; 2007;17: 761–765. doi: 10.1016/j.cub.2007.02.057 17379522

Článek vyšel v časopise


2019 Číslo 12
Nejčtenější tento týden