Effects of long-term statin-treatment on coronary atherosclerosis in patients with inflammatory joint diseases


Autoři: Mona Svanteson aff001;  Silvia Rollefstad aff003;  Nils-Einar Kløw aff001;  Jonny Hisdal aff004;  Eirik Ikdahl aff003;  Joseph Sexton aff005;  Ylva Haig aff001;  Anne Grete Semb aff003
Působiště autorů: Department of Radiology and Nuclear Medicine, Oslo University Hospital, Oslo, Norway aff001;  Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway aff002;  Preventive Cardio-Rheuma Clinic, Department of Rheumatology, Diakonhjemmet Hospital, Oslo, Norway aff003;  Department of Vascular Investigations, Oslo University Hospital, Aker, Oslo, Norway aff004;  Department of Rheumatology, Diakonhjemmet Hospital, Oslo, Norway aff005
Vyšlo v časopise: PLoS ONE 14(12)
Kategorie: Research Article
doi: 10.1371/journal.pone.0226479

Souhrn

Background

The effect of statins over time on coronary atherosclerosis in patients with inflammatory joint diseases (IJD) is unknown. Our aim was to evaluate the change in coronary plaque morphology and volume in long-term statin-treated patients with IJD.

Methods

Sixty-eight patients with IJD and carotid artery plaque(s) underwent coronary computed tomography angiography before and after a mean of 4.7 (range 4.0–6.0) years of statin treatment. The treatment target for low density lipoprotein cholesterol (LDL-c) was ≤1.8 mmol/L. Changes in plaque volume (calcified, mixed/soft and total) and coronary artery calcification (CAC) from baseline to follow-up were assessed using the 17-segment American Heart Association-model.

Results

Median (IQR) increase in CAC after statin treatment was 38 (5–236) Agatston units (p<0.001). Calcified and total plaque volume increased with 5.6 (0.0–49.1) and 2.9 (0.0–23.5) mm3, respectively (p<0.001 for both). The median (IQR) change in soft/mixed plaque volume was -10 (-7.1–0.0), p = <0.001. Patients who had obtained the LDL-c treatment target at follow-up, experienced reduced progression of both CAC and total plaque volume compared to patients with LDL-c >1.8mmol/L (21 [2–143] vs. 69 [16–423], p = 0.006 and 0.65 [-1.0–13.9] vs. 13.0 [0.0–60.8] mm3, p = 0.019, respectively).

Conclusions

A progression of total atherosclerotic plaque volume in statin-treated patients with IJD was observed. However, soft/mixed plaque volume was reduced, suggesting an alteration in plaque composition. Patients with recommended LDL-c levels at follow-up had reduced atherosclerotic progression compared to patients with LDL-c levels above the treatment target, suggesting a beneficial effect of treatment to guideline-recommended lipid targets in IJD patients.

Klíčová slova:

Ankylosing spondylitis – Cardiovascular diseases – Coronary heart disease – Inflammation – Inflammatory diseases – Lipids – Lipoproteins – Statins


Zdroje

1. Han C, Robinson DW Jr., Hackett MV, Paramore LC, Fraeman KH, Bala MV. Cardiovascular disease and risk factors in patients with rheumatoid arthritis, psoriatic arthritis, and ankylosing spondylitis. The Journal of rheumatology. 2006;33:2167–72. 16981296

2. Hirayama A, Saito S, Ueda Y, Takayama T, Honye J, Komatsu S, et al. Qualitative and quantitative changes in coronary plaque associated with atorvastatin therapy. Circulation journal: official journal of the Japanese Circulation Society. 2009;73:718–25.

3. MRC/BHF Heart Protection Study of cholesterol lowering with simvastatin in 20,536 high-risk individuals: a randomised placebo-controlled trial. Lancet (London, England). 2002;360:7–22.

4. Semb AG, Kvien TK, DeMicco DA, Fayyad R, Wun CC, LaRosa JC, et al. Effect of intensive lipid-lowering therapy on cardiovascular outcome in patients with and those without inflammatory joint disease. Arthritis and rheumatism. 2012;64:2836–46. doi: 10.1002/art.34524 22576673

5. Toms TE, Panoulas VF, Douglas KM, Griffiths H, Sattar N, Smith JP, et al. Statin use in rheumatoid arthritis in relation to actual cardiovascular risk: evidence for substantial undertreatment of lipid-associated cardiovascular risk? Annals of the rheumatic diseases. 2010;69:683–8. doi: 10.1136/ard.2009.115717 19854705

6. Ikdahl E, Wibetoe G, Rollefstad S, Salberg A, Bergsmark K, Kvien TK, et al. Guideline recommended treatment to targets of cardiovascular risk is inadequate in patients with inflammatory joint diseases. International journal of cardiology. 2019;274:311–8. doi: 10.1016/j.ijcard.2018.06.111 30007486

7. Diamantis E, Kyriakos G, Quiles-Sanchez LV, Farmaki P, Troupis T. The Anti-Inflammatory Effects of Statins on Coronary Artery Disease: An Updated Review of the Literature. Current cardiology reviews. 2017;13:209–16. doi: 10.2174/1573403X13666170426104611 28462692

8. Puri R, Nicholls SJ, Shao M, Kataoka Y, Uno K, Kapadia SR, et al. Impact of statins on serial coronary calcification during atheroma progression and regression. Journal of the American College of Cardiology. 2015;65:1273–82. doi: 10.1016/j.jacc.2015.01.036 25835438

9. Zheng G, Li Y, Huang H, Wang J, Hirayama A, Lin J. The Effect of Statin Therapy on Coronary Plaque Composition Using Virtual Histology Intravascular Ultrasound: A Meta-Analysis. PloS one. 2015;10:e0133433. doi: 10.1371/journal.pone.0133433 26225936

10. Choy E, Ganeshalingam K, Semb AG, Szekanecz Z, Nurmohamed M. Cardiovascular risk in rheumatoid arthritis: recent advances in the understanding of the pivotal role of inflammation, risk predictors and the impact of treatment. Rheumatology (Oxford, England). 2014;53:2143–54.

11. Ross R. Atherosclerosis—an inflammatory disease. The New England journal of medicine. 1999;340:115–26. doi: 10.1056/NEJM199901143400207 9887164

12. Ridker PM. Clinical application of C-reactive protein for cardiovascular disease detection and prevention. Circulation. 2003;107:363–9. doi: 10.1161/01.cir.0000053730.47739.3c 12551853

13. Motoyama S, Sarai M, Harigaya H, Anno H, Inoue K, Hara T, et al. Computed tomographic angiography characteristics of atherosclerotic plaques subsequently resulting in acute coronary syndrome. Journal of the American College of Cardiology. 2009;54:49–57. doi: 10.1016/j.jacc.2009.02.068 19555840

14. van Velzen JE, Schuijf JD, de Graaf FR, Boersma E, Pundziute G, Spano F, et al. Diagnostic performance of non-invasive multidetector computed tomography coronary angiography to detect coronary artery disease using different endpoints: detection of significant stenosis vs. detection of atherosclerosis. European heart journal. 2011;32:637–45. doi: 10.1093/eurheartj/ehq395 21037254

15. de Graaf MA, Broersen A, Kitslaar PH, Roos CJ, Dijkstra J, Lelieveldt BP, et al. Automatic quantification and characterization of coronary atherosclerosis with computed tomography coronary angiography: cross-correlation with intravascular ultrasound virtual histology. The international journal of cardiovascular imaging. 2013;29:1177–90. doi: 10.1007/s10554-013-0194-x 23417447

16. Nicholls SJ, Tuzcu EM, Sipahi I, Grasso AW, Schoenhagen P, Hu T, et al. Statins, high-density lipoprotein cholesterol, and regression of coronary atherosclerosis. Jama. 2007;297:499–508. doi: 10.1001/jama.297.5.499 17284700

17. Shin S, Park HB, Chang HJ, Arsanjani R, Min JK, Kim YJ, et al. Impact of Intensive LDL Cholesterol Lowering on Coronary Artery Atherosclerosis Progression: A Serial CT Angiography Study. JACC Cardiovascular imaging. 2017;10:437–46. doi: 10.1016/j.jcmg.2016.04.013 27771404

18. Henein M, Granasen G, Wiklund U, Schmermund A, Guerci A, Erbel R, et al. High dose and long-term statin therapy accelerate coronary artery calcification. International journal of cardiology. 2015;184:581–6. doi: 10.1016/j.ijcard.2015.02.072 25769003

19. Semb AG, Rollefstad S, Provan SA, Kvien TK, Stranden E, Olsen IC, et al. Carotid plaque characteristics and disease activity in rheumatoid arthritis. The Journal of rheumatology. 2013;40:359–68. doi: 10.3899/jrheum.120621 23322468

20. Rollefstad S, Ikdahl E, Hisdal J, Olsen IC, Holme I, Hammer HB, et al. Rosuvastatin-Induced Carotid Plaque Regression in Patients With Inflammatory Joint Diseases: The Rosuvastatin in Rheumatoid Arthritis, Ankylosing Spondylitis and Other Inflammatory Joint Diseases Study. Arthritis & rheumatology (Hoboken, NJ). 2015;67:1718–28.

21. Piepoli MF, Hoes AW, Agewall S, Albus C, Brotons C, Catapano AL, et al. 2016 European Guidelines on cardiovascular disease prevention in clinical practice: The Sixth Joint Task Force of the European Society of Cardiology and Other Societies on Cardiovascular Disease Prevention in Clinical Practice (constituted by representatives of 10 societies and by invited experts): Developed with the special contribution of the European Association for Cardiovascular Prevention & Rehabilitation (EACPR). European journal of preventive cardiology. 2016;23:Np1–np96. doi: 10.1177/2047487316653709 27353126

22. Svanteson M, Rollefstad S, Klow NE, Hisdal J, Ikdahl E, Semb AG, et al. Associations between coronary and carotid artery atherosclerosis in patients with inflammatory joint diseases. RMD open. 2017;3:e000544. doi: 10.1136/rmdopen-2017-000544 28955501

23. Klass O, Kleinhans S, Walker MJ, Olszewski M, Feuerlein S, Juchems M, et al. Coronary plaque imaging with 256-slice multidetector computed tomography: interobserver variability of volumetric lesion parameters with semiautomatic plaque analysis software. The international journal of cardiovascular imaging. 2010;26:711–20. doi: 10.1007/s10554-010-9614-3 20339922

24. Austen WG, Edwards JE, Frye RL, Gensini GG, Gott VL, Griffith LS, et al. A reporting system on patients evaluated for coronary artery disease. Report of the Ad Hoc Committee for Grading of Coronary Artery Disease, Council on Cardiovascular Surgery, American Heart Association. Circulation. 1975;51:5–40. doi: 10.1161/01.cir.51.4.5 1116248

25. Agatston AS, Janowitz WR, Hildner FJ, Zusmer NR, Viamonte JM, Detrano R. Quantification of coronary artery calcium using ultrafast computed tomography. Journal of the American College of Cardiology. 1990;15:827–32. doi: 10.1016/0735-1097(90)90282-t 2407762

26. Shaw LJ, Giambrone AE, Blaha MJ, Knapper JT, Berman DS, Bellam N, et al. Long-Term Prognosis After Coronary Artery Calcification Testing in Asymptomatic Patients: A Cohort Study. Annals of internal medicine. 2015;163:14–21. doi: 10.7326/M14-0612 26148276

27. Rodriguez-Granillo GA, Carrascosa P, Bruining N. Progression of coronary artery calcification at the crossroads: sign of progression or stabilization of coronary atherosclerosis? Cardiovascular diagnosis and therapy. 2016;6:250–8. doi: 10.21037/cdt.2016.03.03 27280088

28. Budoff MJ, Young R, Lopez VA, Kronmal RA, Nasir K, Blumenthal RS, et al. Progression of coronary calcium and incident coronary heart disease events: MESA (Multi-Ethnic Study of Atherosclerosis). Journal of the American College of Cardiology. 2013;61:1231–9. doi: 10.1016/j.jacc.2012.12.035 23500326

29. Yoon HC, Emerick AM, Hill JA, Gjertson DW, Goldin JG. Calcium begets calcium: progression of coronary artery calcification in asymptomatic subjects. Radiology. 2002;224:236–41. doi: 10.1148/radiol.2241011191 12091689

30. Shaw LJ, Narula J, Chandrashekhar Y. The never-ending story on coronary calcium: is it predictive, punitive, or protective? Journal of the American College of Cardiology. 2015;65:1283–5. doi: 10.1016/j.jacc.2015.02.024 25835439

31. Criqui MH, Denenberg JO, Ix JH, McClelland RL, Wassel CL, Rifkin DE, et al. Calcium density of coronary artery plaque and risk of incident cardiovascular events. Jama. 2014;311:271–8. doi: 10.1001/jama.2013.282535 24247483

32. Schmermund A, Achenbach S, Budde T, Buziashvili Y, Forster A, Friedrich G, et al. Effect of intensive versus standard lipid-lowering treatment with atorvastatin on the progression of calcified coronary atherosclerosis over 12 months: a multicenter, randomized, double-blind trial. Circulation. 2006;113:427–37. doi: 10.1161/CIRCULATIONAHA.105.568147 16415377

33. Nakazato R, Gransar H, Berman DS, Cheng VY, Lin FY, Achenbach S, et al. Statins use and coronary artery plaque composition: results from the International Multicenter CONFIRM Registry. Atherosclerosis. 2012;225:148–53. doi: 10.1016/j.atherosclerosis.2012.08.002 22981406

34. Singh P, Emami H, Subramanian S, Maurovich-Horvat P, Marincheva-Savcheva G, Medina HM, et al. Coronary Plaque Morphology and the Anti-Inflammatory Impact of Atorvastatin: A Multicenter 18F-Fluorodeoxyglucose Positron Emission Tomographic/Computed Tomographic Study. Circulation Cardiovascular imaging. 2016;9.

35. Goh VK, Lau CP, Mohlenkamp S, Rumberger JA, Achenbach S, Budoff MJ. Outcome of coronary plaque burden: a 10-year follow-up of aggressive medical management. Cardiovascular ultrasound. 2010;8:5. doi: 10.1186/1476-7120-8-5 20226020

36. Achenbach S, Ropers D, Pohle K, Leber A, Thilo C, Knez A, et al. Influence of lipid-lowering therapy on the progression of coronary artery calcification: a prospective evaluation. Circulation. 2002;106:1077–82. doi: 10.1161/01.cir.0000027567.49283.ff 12196332

37. Zeb I, Li D, Nasir K, Malpeso J, Batool A, Flores F, et al. Effect of statin treatment on coronary plaque progression–A serial coronary CT angiography study. Atherosclerosis. 2013;231:198–204. doi: 10.1016/j.atherosclerosis.2013.08.019 24267226

38. Clark D 3rd, Nicholls SJ, St John J, Elshazly MB, Kapadia SR, Tuzcu EM, et al. Visit-to-visit cholesterol variability correlates with coronary atheroma progression and clinical outcomes. European heart journal. 2018.

39. Kontush A. HDL-mediated mechanisms of protection in cardiovascular disease. Cardiovascular research. 2014;103:341–9. doi: 10.1093/cvr/cvu147 24935434

40. Andelius L, Mortensen MB, Norgaard BL, Abdulla J. Impact of statin therapy on coronary plaque burden and composition assessed by coronary computed tomographic angiography: a systematic review and meta-analysis. European heart journal cardiovascular Imaging. 2018;19:850–8. doi: 10.1093/ehjci/jey012 29617981

41. Oberoi S, Meinel FG, Schoepf UJ, Nance JW, De Cecco CN, Gebregziabher M, et al. Reproducibility of noncalcified coronary artery plaque burden quantification from coronary CT angiography across different image analysis platforms. AJR American journal of roentgenology. 2014;202:W43–9. doi: 10.2214/AJR.13.11225 24370164

42. Symons R, Morris JZ, Wu CO, Pourmorteza A, Ahlman MA, Lima JA, et al. Coronary CT Angiography: Variability of CT Scanners and Readers in Measurement of Plaque Volume. Radiology. 2016;281:737–48. doi: 10.1148/radiol.2016161670 27636027

43. Dettmer M, Glaser-Gallion N, Stolzmann P, Glaser-Gallion F, Fornaro J, Feuchtner G, et al. Quantification of coronary artery stenosis with high-resolution CT in comparison with histopathology in an ex vivo study. European journal of radiology. 2013;82:264–9. doi: 10.1016/j.ejrad.2012.09.021 23116807

44. Sabour S, Rutten A, van der Schouw YT, Atsma F, Grobbee DE, Mali WP, et al. Inter-scan reproducibility of coronary calcium measurement using Multi Detector-Row Computed Tomography (MDCT). European journal of epidemiology. 2007;22:235–43. doi: 10.1007/s10654-007-9123-4 17427036

45. Papadopoulou SL, Garcia-Garcia HM, Rossi A, Girasis C, Dharampal AS, Kitslaar PH, et al. Reproducibility of computed tomography angiography data analysis using semiautomated plaque quantification software: implications for the design of longitudinal studies. The international journal of cardiovascular imaging. 2013;29:1095–104. doi: 10.1007/s10554-012-0167-5 23224377

46. Kotseva K, De Bacquer D, De Backer G, Ryden L, Jennings C, Gyberg V, et al. Lifestyle and risk factor management in people at high risk of cardiovascular disease. A report from the European Society of Cardiology European Action on Secondary and Primary Prevention by Intervention to Reduce Events (EUROASPIRE) IV cross-sectional survey in 14 European regions. European journal of preventive cardiology. 2016;23:2007–18. doi: 10.1177/2047487316667784 27638542


Článek vyšel v časopise

PLOS One


2019 Číslo 12