Does historical land use affect the regional distribution of fleshy-fruited woody plants?

Autoři: Matilda Arnell aff001;  Sara A. O. Cousins aff002;  Ove Eriksson aff001
Působiště autorů: Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm, Sweden aff001;  Biogeography and Geomatics, Department of Physical Geography, Stockholm University, Stockholm, Sweden aff002
Vyšlo v časopise: PLoS ONE 14(12)
Kategorie: Research Article


Species richness and composition of current vegetation may reflect historical land use. We develop and examine the hypothesis that regional distribution and richness of fleshy-fruited woody plants, a group sharing life-form and dispersal system, reflect historical land use in open or semi-open habitats. Historical land use was based on maps from around the year 1900 for two regions in Sweden, and field data was gathered from surveys made in these regions. Species richness was positively related to historical land use indicated as open habitat in 1900. In one of the regions, five out of nine examined species were positively related to historical land use (with historical effect R2 ranging between 0.03 and 0.22). In the other region, we found a weaker positive relationship with historical land use in two out of nine examined species (R2 0.01 and 0.02). We conclude that current occurrence and richness of fleshy-fruited woody species is partly a legacy of historical land use, and that regions may vary in this respect. Based on a comparison between the two regions examined here, we discuss some potential causes behind this variation.

Klíčová slova:

Birds – Forests – Fruits – Grasslands – Habitats – Land use – Species diversity – Sweden


1. Ellis EC, Ramankutty N. Putting people in the map: anthropogenic biomes of the world. Front Ecol Environ. 2008;6: 439–447.

2. Ellis EC. Ecology in an anthropogenic biosphere. Ecol Monogr. 2015;85: 287–331.

3. Boivin NL, Zeder MA, Fuller DQ, Crowther A, Larson G, Erlandson JM, et al. Ecological consequences of human niche construction: examining long-term anthropogenic shaping of global species distributions. Proc Natl Acad Sci U S A. 2016;113: 6388–6396. doi: 10.1073/pnas.1525200113 27274046

4. Foster DR. Land-use history (1730–1990) and vegetation dynamics in central New England, USA. J Ecol. 1992;80: 753–771.

5. Hermy M, Verheyen K. Legacies of the past in the present-day forest biodiversity: a review of past land-use effects on forest plant species composition and diversity. Ecol Res. 2007;22: 361–371.

6. Vellend M, Brown CD, Kharouba HM, McCune JL, Myers-Smith IH. Historical ecology: using unconventional data sources to test for effects of global environmental change. Am J Bot. 2013;100: 1294–1305. doi: 10.3732/ajb.1200503 23804553

7. Bürgi M, Östlund L, Mladenoff DJ. Legacy effects of human land use: ecosystems as time-lagged systems. Ecosystems. 2017;20: 94–103.

8. Willis KJ, Gillson L, Brncic TM. How “virgin” is virgin rainforest? Science. 2004;304: 402–403. doi: 10.1126/science.1093991 15087539

9. Hall B, Motzkin G, Foster DR, Syfert M, Burk J. Three hundred years of forest and land-use change in Massachusetts, USA. J Biogeogr. 2002;29: 1319–1335.

10. Plieninger T, Hartel T, Martín-López B, Beaufoy G, Bergmeier E, Kirby K, et al. Wood-pastures of Europe: geographic coverage, social–ecological values, conservation management, and policy implications. Biol Conserv. 2015;190: 70–79.

11. Cousins SAO, Eriksson O. The influence of management history and habitat on plant species richness in a rural hemiboreal landscape, Sweden. Landsc Ecol. 2002;17: 517–529.

12. Lindborg R, Eriksson O. Historical landscape connectivity affects present plant species diversity. Ecology. 2004;85: 1840–1845.

13. Helm A, Hanski I, Pärtel M. Slow response of plant species richness to habitat loss and fragmentation. Ecol Lett. 2006;9: 72–77. doi: 10.1111/j.1461-0248.2005.00841.x 16958870

14. Poschlod P, Baumann A. The historical dynamics of calcareous grasslands in the central and southern Franconian Jurassic mountains: a comparative pedoanthracological and pollen analytical study. The Holocene. 2010;20: 13–23.

15. Eriksson O. Species pools in cultural landscapes—niche construction, ecological opportunity and niche shifts. Ecography. 2013;36: 403–413.

16. Berglund BE, editor. The cultural landscape during 6000 years in southern Sweden—the Ystad project. Ecol Bull. 1991;41: 1–495.

17. Poschlod P, Wallis de Vries MF. The historical and socioeconomic perspective of calcareous grasslands—lessons from the distant and recent past. Biol Conserv. 2002;104: 361–376.

18. Emanuelsson U. The rural landscapes of Europe: how man has shaped European nature. Stockholm: Swedish Research Council Formas; 2009.

19. Eriksson O, Cousins SAO. Historical landscape perspectives on grasslands in Sweden and the Baltic region. Land. 2014;3: 300–321.

20. Marteinsdóttir B, Eriksson O. Trait-based filtering from the regional species pool into local grassland communities. J Plant Ecol. 2014;7: 347–355.

21. Veen P, Jefferson R, de Smidt J, van der Straaten J, editors. Grasslands in Europe of High Nature Value. Zeist: KNNV Publishing; 2009.

22. Gustavsson E, Lennartsson T, Emanuelsson M. Land use more than 200 years ago explains current grassland plant diversity in a Swedish agricultural landscape. Biol Conserv. 2007;138: 47–59.

23. Rodríguez-Pérez J, García D, Martínez D. Spatial networks of fleshy-fruited trees drive the flow of avian seed dispersal through a landscape. Funct Ecol. 2014;28: 990–998.

24. Hampe A, García-Castaño JL, Schupp EW, Jordano P. Spatio-temporal dynamics and local hotspots of initial recruitment in vertebrate-dispersed trees. J Ecol. 2008;96: 668–678.

25. Lázaro A, Mark S, Olesen JM. Bird-made fruit orchards in northern Europe: nestedness and network properties. Oikos. 2005;110: 321–329.

26. Haeggström C-A. Wooded meadows and the use of deciduous trees for fodder, fuel, carpentry and building purposes. In: Métailié J-P, editor. Protoindustries et histoire des forêts. Toulouse: Les Cahiers de l’ISARD; 1992. pp. 151–162.

27. Widgren M. Climate and causation in the Swedish Iron Age: learning from the present to understand the past. Geogr Tidsskr-Dan J Geogr. 2012;112: 126–134.

28. Berglund BE, Kitagawa J, Lageras P, Nakamura K, Sasaki N, Yasuda Y. Traditional farming landscapes for sustainable living in Scandinavia and Japan: global revival through the Satoyama Initiative. Ambio. 2014;43: 559–578. doi: 10.1007/s13280-014-0499-6 24700088

29. Eriksson O, Arnell M. Niche construction, entanglement and landscape domestication in Scandinavian infield systems. Landsc Res. 2017;42: 78–88.

30. Kollmann J, Schneider B. Landscape structure and diversity of fleshy-fruited species at forest edges. Plant Ecol. 1999;144: 37–48.

31. Sarlöv Herlin IL, Fry GL. Dispersal of woody plants in forest edges and hedgerows in a Southern Swedish agricultural area: the role of site and landscape structure. Landsc Ecol. 2000;15: 229–242.

32. Garcia D, Martinez D. Species richness matters for the quality of ecosystem services: a test using seed dispersal by frugivorous birds. Proc R Soc B. 2012;279: 3106–3113. doi: 10.1098/rspb.2012.0175 22456879

33. García D, Donoso I, Rodríguez‐Pérez J. Frugivore biodiversity and complementarity in interaction networks enhance landscape‐scale seed dispersal function. Funct Ecol. 2018;32: 2742–2752.

34. Palmgren A. Studier öfver löfängsområdena på Åland. III Statistisk undersökning af floran. Acta Soc Fauna Flora Fenn. 1916;42: 479–633.

35. Slotte H. Harvesting of leaf-hay shaped the Swedish landscape. Landsc Ecol. 2001;16: 691–702.

36. Haeggström C-A. Vegetation and soil of the wooded meadows in Nåtö, Åland. Acta Bot Fenn. 1983;120: 1–66.

37. Smith BD. General patterns of niche construction and the management of “wild” plant and animal resources by small-scale pre-industrial societies. Philos Trans R Soc B. 2011;366: 836–848.

38. Wilson JB, Peet RK, Dengler J, Pärtel M. Plant species richness: the world records. J Veg Sci. 2012;23: 796–802.

39. Cousins SAO, Auffret AG, Lindgren J, Tränk L. Regional-scale land-cover change during the 20th century and its consequences for biodiversity. Ambio. 2015;44: S17–S27. doi: 10.1007/s13280-014-0585-9 25576277

40. Swedish Meteorological and Hydrological Institute. Dataserier med normalvärden för perioden 1961–1990; 2019 [cited 2019 June 7]. Database: SMHI Data [Internet]. Available from:

41. Gadd C-J. The agricultural revolution in Sweden, 1700–1870. In: Morell M, Myrdal J, editors. The Agrarian History of Sweden: From 4000 BC to AD 2000. Lund: Nordic Academic Press; 2011. pp. 118–164.

42. Morell M. Agriculture in industrial society 1870–1945. In: Morell M, Myrdal J, editors. The Agrarian History of Sweden: From 4000 BC to AD 2000. Lund: Nordic Academic Press; 2011. pp. 165–213.

43. Cousins SAO. Landscape history and soil properties affect grassland decline and plant species richness in rural landscapes. Biol Conserv. 2009;142: 2752–2758.

44. Jerling L, Nordin U. Bland skötar, kobbar och kor: Stockholms skärgård—uppkomst och utveckling. Stockholm: Swedish Research Council Formas; 2007.

45. Nagelkerke NJD. A note on a general definition of the coefficient of determination. Biometrika. 1991;78: 691–692.

46. Nakagawa S, Schielzeth H. A general and simple method for obtaining R2 from generalized linear mixed-effects models. Methods Ecol Evol. 2013;4: 133–142.

47. P Core Team. R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing; 2015.

48. Bates D, Mächler M, Bolker B, Walker S. Fitting Linear Mixed-Effects Models using lme4. J Stat Softw. 2015;67: 1–48.

49. Lefcheck JS. piecewiseSEM: Piecewise structural equation modelling in R for ecology, evolution, and systematics. Methods Ecol Evol. 2016;7: 573–579.

50. Van Ruremonde R, Kalkhoven JTR. Effects of woodlot isolation on the dispersion of plants with fleshy fruits. J Veg Sci. 1991; 377–384.

51. Svenning J-C, Baktoft KH, Balslev H. Land-use history affects understorey plant species distributions in a large temperate-forest complex, Denmark. Plant Ecol. 2009;201: 221–234.

52. Bernes C. Biodiversity in Sweden. Stockholm: Swedish Environmental Protection Agency; 2011.

53. Segerström U, Emanuelsson M. Extensive forest grazing and hay-making on mires–vegetation changes in south-central Sweden due to land use since medieval times. Veg Hist Archaeobotany. 2002;11: 181–190.

54. Karlsson H, Emanuelsson M, Segerström U. The history of a farm–shieling system in the central Swedish forest region. Veg Hist Archaeobotany. 2010;19: 103–119.

55. Żywiec M, Holeksa J, Wesołowska M, Szewczyk J, Zwijacz‐Kozica T, Kapusta P. Sorbus aucuparia regeneration in a coarse-grained spruce forest–a landscape scale. J Veg Sci. 2013;24: 735–743.

56. Plein M, Laengsfeld L, Neuschulz EL, Schultheiss C, Ingmann L, Toepfer T, et al. Constant properties of plant-frugivore networks despite fluctuations in fruit and bird communities in space and time. Ecology. 2013;94: 1296–1306. doi: 10.1890/12-1213.1 23923493

57. Bolmgren K, Eriksson O. Are mismatches the norm? Timing of flowering, fruiting, dispersal and germination and their fitness effects in Frangula alnus (Rhamnaceae). Oikos. 2015;124: 639–648.

58. Eriksson O. What is biological cultural heritage and why should we care about it? An example from Swedish rural landscapes and forests. Nat Conserv. 2018;28: 1–32.

Článek vyšel v časopise


2019 Číslo 12
Nejčtenější tento týden