Rapid serial blinks: An index of temporally increased cognitive load


Autoři: Ryota Nomura aff001;  Shunichi Maruno aff002
Působiště autorů: Faculty of Education and Psychology, Kagoshima Immaculate Heart University, Kagoshima, Japan aff001;  Graduate School of Human-Environment Studies, Kyushu University, Fukuoka, Japan aff002
Vyšlo v časopise: PLoS ONE 14(12)
Kategorie: Research Article
doi: 10.1371/journal.pone.0225897

Souhrn

In recent years, natural viewing settings with video presentation have been used in neurological and psychological experiments. However, the experienced cognitive load may differ among participants. In this study, we show that rapid serial blinks (RSB) can indicate temporally increased cognitive load with high temporal resolution. We proposed a method to create a personal criterion for respective participants by using empirical blink intervals. When we focused on more than four serial blinks (i.e., three inter-blink intervals), an increased number of RSB detect participants who felt hard to understanding, indicating a poor understanding of the subject matter. By contrast, a constant criterion across participants used in previous study could not detect participant’s understanding. These results suggest that individual differences in cognitive trait of each participant may skew the results of experiments. To avoid biases, we recommend researchers to perform an operational check on individually different temporally increased cognitive loads among experimental groups.

Klíčová slova:

Cognition – Cognitive neurology – Cognitive psychology – Eyelids – Eyes – Lectures – Schools – Exponential functions


Zdroje

1. Andrews T. J., Smith R. K., Hoggart R. L., Ulrich P. I., & Gouws A. D. (2018). Neural correlates of group bias during natural viewing. Cereb. Cortex, bhy206. doi: 10.1093/cercor/bhy206 30272123

2. Teufel C., Dakin S. C., & Fletcher P. C. (2018). Prior object-knowledge sharpens properties of early visual feature-detectors. Sci. Rep., 8(1), 10853. doi: 10.1038/s41598-018-28845-5 30022033

3. Dmochowski J. P., Bezdek M. A., Abelson B. P., Johnson J. S., Schumacher E. H., & Parra L. C. (2014). Audience preferences are predicted by temporal reliability of neural processing. Nat. Comm., 5, 4567.

4. Wu G., Chen F., Pan X., Xu M., & Zhu X. (2019). Using the visual intervention influence of pavement markings for rutting mitigation–part I: preliminary experiments and field tests. International Journal of Pavement Engineering, 20(6), 734–746.

5. Zhu X., Dai Z., Chen F., Pan X., & Xu M. (2019). Using the Visual Intervention Influence of Pavement Marking for Rutting Mitigation II: Visual Intervention Timing Based on the Finite Element Simulation. International Journal of Pavement Engineering, 20(5), 573–584.

6. Jepma M., Nieuwenhuis S. (2011). Pupil diameter predicts changes in the exploration-exploitation trade-off: Evidence for the adaptive gain theory. J. Cogn. Neurosci., 23, 1587–1596. doi: 10.1162/jocn.2010.21548 20666595

7. Beatty J. (1982). Task-evoked pupillary responses, processing load, and the structure of processing resources. Psych. Bullet., 91, 276–292.

8. Wierda S. M., van Rijn H., Taatgen N. A., Martens S. (2012). Pupil dilation deconvolution reveals the dynamics of attention at high temporal resolution. Proc. Natl. Acad. Sci. USA, 109, 8456–8460. doi: doi.org/10.1073/pnas.1201858109

9. Paprocki R., & Lenskiy A. (2017). What does eye-blink rate variability dynamics tell us about cognitive performance? Front. Hum. Neurosci, 11:620. doi: 10.3389/fnhum.2017.00620 29311876

10. Fukuda K., & Matsunaga K. (1983). Changes in blink rate during signal discrimination tasks. Japanese Psych. Res., 25, 140–146.

11. Hoppe D., Helfmann S., Rothkopf C. A. (2018). Humans quickly learn to blink strategically in response to environmental task demands. Proc. Natl. Acad. Sci, 201714220: 1–6. doi: 10.1073/pnas.1714220115 29444860

12. Nomura R., Hino K., Shimazu M., Liang Y., & Okada T. (2015). Emotionally excited eyeblink-rate variability predicts an experience of transportation into the narrative world. Frontiers in Psychology, 6, 447. doi: 10.3389/fpsyg.2015.00447 26029123

13. Nomura R., Liang Y.-Z., Morita K., Fujiwara K., Ikeguchi T. (2018). Threshold-varying integrate-and-fire model reproduces distributions of spontaneous blink intervals. PloS ONE, 13(10), e0206528. doi: 10.1371/journal.pone.0206528 30376565

14. Schellini S. A., Sampaio A. A. Jr., Hoyama E., Cruz A. A., Padovani C. R. (2005). Spontaneous eye blink analysis in the normal individual. Orbit, 24, 239–242. doi: 10.1080/01676830590922057 16354632

15. Lindén A., & Mäntyniemi S. (2011). Using the negative binomial distribution to model overdispersion in ecological count data. Ecology, 92(7), 1414–1421. doi: 10.1890/10-1831.1 21870615

16. Nomura R., Okada T. (2016). “Assessing the appeal power of narrative performance by using eyeblink synchronization among audience,” in Computational and Cognitive Approaches to Narratology, eds. (IGI Global), 304–321.

17. Takenaka Y., Hanzawa M., Minakawa M., Sugiyama T., Tada H. (2014). Endogenous eyeblinks in patients with epilepsy. J. Hum. Info. 19: 39–52.

18. Nomura R., Liang Y., & Okada T. (2015). Interactions among collective spectators facilitate eyeblink synchronization. PloS ONE, 10(10), e0140774. doi: 10.1371/journal.pone.0140774 26479405

19. Nakano T., & Miyazaki Y. (2019). Blink synchronization is an indicator of interest while viewing videos. International Journal of Psychophysiology, 135, 1–11. doi: 10.1016/j.ijpsycho.2018.10.012 30428333

20. Ponder E., & Kennedy W. P. (1927). On the act of blinking. Quarterly Journal of Experimental Physiology: Translation and Integration, 18(2), 89–110.


Článek vyšel v časopise

PLOS One


2019 Číslo 12