Zinc thiazole enhances defense enzyme activities and increases pathogen resistance to Ralstonia solanacearum in peanut (Arachis hypogaea) under salt stress


Autoři: Suling Sang aff001;  Shaojian Li aff001;  Wanwan Fan aff001;  Na Wang aff001;  Meng Gao aff001;  Zhenyu Wang aff001
Působiště autorů: Institute of Plant Protection, Henan Academy of Agricultural Sciences, Key Laboratory of Integrated Pest Management on Crops in Southern Region of North China; Henan Key Laboratory of Crop Pest Control; International Joint Research Laboratory for Crop Pro aff001
Vyšlo v časopise: PLoS ONE 14(12)
Kategorie: Research Article
doi: 10.1371/journal.pone.0226951

Souhrn

Crop plants always encounter multiple stresses in the natural environment. Here, the effects of the fungicide zinc thiazole (ZT) on propagation of Ralstonia solanacearum, a bacterial pathogen, were investigated in peanut seedlings under salt stress. Compared with water control, salt stress markedly reduced pathogen resistance in peanut seedlings. However, impaired pathogen resistance was alleviated by treatment with dimethylthiourea, a specific ROS scavenger, or ZT. Subsequently, salt stress or combined salt and pathogen treatment resulted in inhibition of photosynthesis, loss of chlorophyll and accumulation of thiobarbituric acid reactive substances, which could be reversed by ZT. In addition, ZT treatment suppressed the salt stress up-regulated Na+ content and Na+/K+ ratios in peanut roots. Furthermore, salt stress or combined salt and pathogen treatment impaired the activities of antioxidant (e.g. superoxide dismutase/SOD and catalase/CAT), and defense-related (e.g. phenylalanine ammonia lyase /PAL and polyphenol oxidase/PPO) enzymes, which could be rescued by addition of ZT. In contrast, only slight changes of SOD and CAT activities were observed in pathogen-infected seedlings. Similarly, activities of PAL and PPO were slightly modified by salt stress in peanut seedlings. These results suggest that the ZT-enhanced pathogen resistance can be partly attributed to the improvement of photosynthetic capacity and defense enzyme activities, and also the inhibition of Na+/K+ ratios, in this salt-stressed crop plant.

Klíčová slova:

Antioxidants – Chlorophyll – Leaves – Peanut – Photosynthesis – Plant resistance to abiotic stress – Seedlings – Superoxide dismutase


Zdroje

1. Munns R. Genes and salt tolerance: bringing them together. New Phytol. 2005; 167: 645–63. doi: 10.1111/j.1469-8137.2005.01487.x 16101905

2. Ashraf M. Some important physiological selection criteria for salt tolerance in plants. Flora Rev. 2004; 199: 361–376.

3. Deng B, Guo M, Liu H, Tian S, Zhao X. Inhibition of autophagy by hydroxychloroquine enhances antioxidant nutrients and delays postharvest fruit senescence of Ziziphus jujuba. Food Chem. 2019; 296: 56–62. doi: 10.1016/j.foodchem.2019.05.189 31202306

4. Gill S, Tuteja N. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol. Biochem. 2010; 48: 909–30. doi: 10.1016/j.plaphy.2010.08.016 20870416

5. Yabuuchi E, Kosako Y, Yano I, Hotta H, Nishiuki Y. Transfer of two Burkholderia and an Acaligenes species to Ralstonia gen. Nov.: Proposal of Ralstonia pickettii (Ralston, Palleroni and Duodoroff 1973) Comb. Nov., Ralstonia solanacearum (Smith 1896) Comb. Nov. and Ralstonia eutropha (Davis 1969) Comb. Nov. Microbiol Immunol. 1995; 39: 897–904. doi: 10.1111/j.1348-0421.1995.tb03275.x 8657018

6. Hayward H. Biology and epidemiology of bacterial wilt caused by Pseudomonas solanacearum. Annu. Rev. Phytopathol. 1991; 29: 65–87. doi: 10.1146/annurev.py.29.090191.000433 18479193

7. Vanitha S, Niranjana S, Umesha S. Role of phenylalanine ammonia lyase and polyphenol oxidase in host resistance to bacterial wilt of tomato. J. Phytopathol. 2009; 157: 552–7.

8. Li L, Steffens J. Overexpression of polyphenol oxidase in transgenic tomato plants results in enhanced bacterial disease resistance. Planta 2002; 215: 239–47. doi: 10.1007/s00425-002-0750-4 12029473

9. Mittler R. Abiotic stress, the field environment and stress combination. Trends Plant Sci. 2006; 11: 15–9. doi: 10.1016/j.tplants.2005.11.002 16359910

10. Yang K, Zhang Y, Zhu L, Li Z, Deng B. Omethoate treatment mitigates high salt stress inhibited maize seed germination. Pestic. Biochem. Physiol. 2018; 144: 79–82. doi: 10.1016/j.pestbp.2017.12.001 29463412

11. Deng B, Yang K, Zhang Y, Li Z. Can heavy metal pollution defend seed germination against heat stress? Effect of heavy metals (Cu2+, Cd2+ and Hg2+) on maize seed germination under high temperature. Environ. Pollut. 2016; 216: 46–52. doi: 10.1016/j.envpol.2016.05.050 27239687

12. Fujita M, Fujita Y, Noutoshi Y, Takahashi F, Narusaka Y, Yamaguchi-Shinozaki K, Shinozaki K. Crosstalk between abiotic and biotic stress responses: a current view from the points of convergence in the stress signaling networks. Curr. Opin. Plant Biol. 2006; 9: 436–42. doi: 10.1016/j.pbi.2006.05.014 16759898

13. Atkinson N, Urwin P. The interaction of plant biotic and abiotic stresses: from genes to the field. J. Exp. Bot. 2012; 63: 3523–43. doi: 10.1093/jxb/ers100 22467407

14. Wiese J, Kranz T, Schubert S. Induction of pathogen resistance in barley by abiotic stress. Plant Biol. 2004; 6: 529–36. doi: 10.1055/s-2004-821176 15375723

15. Beattie G. Water relations in the interaction of foliar bacterial pathogens with plants. Ann. Rev. Phytopathol. 2011; 49: 533–55.

16. Ramegowda V, Senthil-Kumar M, Ishiga Y, Kaundal A, Udayakumar M, Mysore K. Drought stress acclimation imparts tolerance to Sclerotinia sclerotiorum and Pseudomonas syringae in Nicotiana benthamiana. Int. J. Mol. Sci. 2013; 14: 9497–513. doi: 10.3390/ijms14059497 23644883

17. Zhang W, Jiang F, Ou J. Global pesticide consumption and pollution: with China as a focus. Proc. Int. Acad. Ecol. Environ. Sci. 2011; 1: 125–44.

18. Chen Y, Yang X, Gu C, Zhang A, Zhang Y, Wang W, et al. Activity of a novel bactericide, zinc thiazole against Xanthomonas oryzae pv. oryzae in Anhui Province of China. Ann. Appl. Biol. 2015; 166: 129–35.

19. Zhang C, Wu H, Li X, Shi H, Wei F, Zhu G. Baseline sensitivity of natural populations and resistance of mutants of Xanthomonas oryzae pv. oryzae to a novel bactericide, zinc thiazole. Plant Pathol. 2013; 62: 1378–83.

20. Arias-Estévez M, López-Periago E, Martínez-Carballo E, Simal-Gándara J, Mejuto J, García-Río L. The mobility and degradation of pesticides in soils and the pollution of groundwater resources. Agric. Ecosystems Environ. 2008; 123: 247–60.

21. Glazebrook J. Contrasting mechanisms of defense against biotrophic and necrotrophic pathogens. Annu. Rev. Phytopathol. 2005; 43: 205–27. doi: 10.1146/annurev.phyto.43.040204.135923 16078883

22. Ahn I, Lee S, Kim M, Park S, Hwang D, Bae S. Priming by rhizobacterium protects tomato plants from biotrophic and necrotrophic pathogen infections through multiple defense mechanisms. Mol. Cells 2011; 32: 7–14. doi: 10.1007/s10059-011-2209-6 21710203

23. Poschenrieder C, Tolrà R, Barceló J. Can metals defend plants against biotic stress?. TRENDS Plant Sci. 2006; 11: 288–95. doi: 10.1016/j.tplants.2006.04.007 16697693

24. Estrada A, Royse D. Yield, size and bacterial blotch resistance of Pleurotus eryngii grown on cottonseed hulls/oak sawdust supplemented with manganese, copper and whole ground soybean. Bioresour. Technol. 2007; 98: 1898–906. doi: 10.1016/j.biortech.2006.07.027 16973354

25. Bolton M. Primary metabolism and plant defense—fuel for the fire. Mol. Plant Microbe Interact 2009; 22: 487–97. doi: 10.1094/MPMI-22-5-0487 19348567

26. Rojas C, Senthil-Kumar M, Tzin V, Mysore K. Regulation of primary plant metabolism during plant-pathogen interactions and its contribution to plant defense. Front. Plant Sci. (2014) https://doi.org/10.3389/fpls.2014.00017

27. James R, Munns R, Von Caemmerer S, Trejo C, Miller C, Condon T. Photosynthetic capacity is related to the cellular and subcellular partitioning of Na+, K+ and Cl‐ in salt‐affected barley and durum wheat. Plant Cell Environ. 2006; 29: 2185–97. doi: 10.1111/j.1365-3040.2006.01592.x 17081251

28. Alscher R, Erturk N, Heath L. Role of superoxide dismutases (SODs) in controlling oxidative stress in plants. J. Exp. Bot. 2002; 53: 1331–41. 11997379

29. Wadhwa N, Joshi U, Mehta N. Zinc induced enzymatic defense mechanisms in Rhizoctonia root rot infected clusterbean seedlings. J. Bot. 2014; 2014: 1–7.

30. Hardison J. Chemotherapy of smut and rust pathogens in Poa pratensis by thiazole compounds. Phytopathology 1971; 61: 1396–9.

31. Mishra L, Singh V. Metal-thiazole chelates as fungicides. Agric. Biol. Chem. 1991; 55: 1883–5.

32. Xu J, Pan Z, Prior P, Xu J, Zhang Z, Zhang H, … Feng J. Genetic diversity of Ralstonia solanacearum strains from China. Eur. J. Plant Pathol. 2009; 125: 641–53.

33. Boucher C, Barberis P, Trigalet A, Demery D. Transposon mutagenesis of Pseudomonas solanacearum: Isolation of Tn5-induced avirulent mutants. J. Gen. Microbiol. 1985; 131: 2449–457.

34. Chen Y, Ren X, Zhou X, Huang L, Yan L, Lei Y, … Jiang H. Dynamics in the resistant and susceptible peanut (Arachis hypogaea L.) root transcriptome on infection with the Ralstonia solanacearum. BMC Genomics 2014; 15: 1078–93. doi: 10.1186/1471-2164-15-1078 25481772

35. Murashige T, Skoog F. A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol. Plant. 1962; 15: 473–97.

36. Lichtenthaler H. Chlorophyll and carotenoids:pigments of photosynthetic biomembranes. Meth. Enzymol. 1987; 148: 349–82.

37. Heath R, Packer L. Photoperoxidation in isolated chloroplast. I. Kinetics and stoichiometry of fatty acid peroxidation. Arch. Biochem. Biophys. 1968; 125: 180–98.

38. Dhindsa R, Dhindsa P, Thorpe T. Leaf senescence correlated with increased levels of membrane permeability and lipid-peroxidation and decreased levels of superoxide dismutase and catalase. J. Exp. Bot. 1980; 32: 93–101.

39. Deng B, Jin X, Yang Y, Lin Z, Zhang Y. The regulatory role of riboflavin in the drought tolerance of tobacco plants depends on ROS production. Plant Growth Regul. 2014; 72: 269–77.

40. Bradford M. A rapid and sensitive method for the quantification of microgram quantities of protein using the principle of protein dye-binding. Anal. Biochem. 1976; 72: 248–54. doi: 10.1006/abio.1976.9999 942051


Článek vyšel v časopise

PLOS One


2019 Číslo 12