Colonic bacterial composition is sex-specific in aged CD-1 mice fed diets varying in fat quality

Autoři: Allison L. Unger aff001;  Korin Eckstrom aff002;  Thomas L. Jetton aff003;  Jana Kraft aff001
Působiště autorů: Department of Animal and Veterinary Sciences, The University of Vermont, Burlington, Vermont, United States of America aff001;  Department of Microbiology and Molecular Genetics, The University of Vermont, Burlington, Vermont, United States of America aff002;  Department of Medicine, Division of Endocrinology, Metabolism and Diabetes, The University of Vermont, Colchester, Vermont, United States of America aff003
Vyšlo v časopise: PLoS ONE 14(12)
Kategorie: Research Article
doi: 10.1371/journal.pone.0226635


Evidence suggests that sex influences the effect of diet on the gut bacterial composition, yet, no studies have been performed assessing dietary fatty acid composition (i.e., fat quality) in this context. This study examined the effect of dietary fat quality on colonic bacterial composition in an aged, genetically-diverse mouse population. CD-1 mice were fed isoenergetic diets consisting of (1) control fat (CO; “Western-style” fat blend), (2) CO supplemented with 30% fish oil, (3) CO supplemented with 30% dairy fat, or (4) CO supplemented with 30% echium oil. Fecal samples were collected at mid-life and aged (reproductively senescent) time points. Overall, the abundance of Bacteroidetes was greater in mice fed echium oil compared to mice fed the control fat. Examination of colonic bacterial relative abundance also revealed sex differences, with 73 bacterial taxa being differentially expressed in males and females. Notably, results showed a strong interactive effect among the diet, sex, and age of mice which influenced colonic bacterial relative abundance and alpha diversity. In males, supplementation of the diet with dairy fat or echium oil caused the abundance of Bacteroidetes and Bacteroides to change with age. Additionally, supplementation of the diet with fish oil induced sex-dependent changes in the alpha diversity of aged mice compared to mid-life. This work supports that sex is a critical factor in colonic bacterial composition of an aged, genetically-heterogenous population. Moreover, this study establishes that the effectiveness of dietary interventions for health maintenance and disease prevention via direct or indirect manipulation of the gut microbiota is likely dependent on an individual’s sex, age, and genetic background.

Klíčová slova:

Body weight – Colon – Community structure – Diet – Fats – Gut bacteria – Oils – Vegetable oils


1. Murphy EA, Velazquez KT, Herbert KM. Influence of High-Fat-Diet on Gut Microbiota: A Driving Force for Chronic Disease Risk. Curr Opin Clin Nutr Metab Care. 2015;18: 515–520. doi: 10.1097/MCO.0000000000000209 26154278

2. Buford TW. (Dis)Trust your gut: the gut microbiome in age-related inflammation, health, and disease. Microbiome. 2017;5: 80. doi: 10.1186/s40168-017-0296-0 28709450

3. Blander JM, Longman RS, Iliev ID, Sonnenberg GF, Artis D. Regulation of inflammation by microbiota interactions with the host. Nat Immunol. 2017;18: 851–860. doi: 10.1038/ni.3780 28722709

4. Sender R, Fuchs S, Milo R. Revised estimates for the number of human and bacteria cells in the body. PLOS Biol. 2016;14: e1002533. doi: 10.1371/journal.pbio.1002533 27541692

5. Gill SR, Pop M, Deboy RT, Eckburg PB, Turnbaugh PJ, Samuel BS, et al. Metagenomic analysis of the human distal gut microbiome. Science. 2006;312: 1355–9. doi: 10.1126/science.1124234 16741115

6. Rowland I, Gibson G, Heinken A, Scott K, Swann J, Thiele I, et al. Gut microbiota functions: metabolism of nutrients and other food components. Eur J Nutr. 2018;57: 1–24. doi: 10.1007/s00394-017-1445-8 28393285

7. Singh RK, Chang H-W, Yan D, Lee KM, Ucmak D, Wong K, et al. Influence of diet on the gut microbiome and implications for human health. J Transl Med. 2017;15: 73. doi: 10.1186/s12967-017-1175-y 28388917

8. Goodrich JK, Davenport ER, Waters JL, Clark AG, Ley RE. Cross-species comparisons of host genetic associations with the microbiome. Science. 2016;352: 532–5. doi: 10.1126/science.aad9379 27126034

9. Odamaki T, Kato K, Sugahara H, Hashikura N, Takahashi S, Xiao J-Z, et al. Age-related changes in gut microbiota composition from newborn to centenarian: a cross-sectional study. BMC Microbiol. 2016;16: 90. doi: 10.1186/s12866-016-0708-5 27220822

10. Yatsunenko T, Rey FE, Manary MJ, Trehan I, Dominguez-Bello MG, Contreras M, et al. Human gut microbiome viewed across age and geography. Nature. 2012;486: 222. doi: 10.1038/nature11053 22699611

11. O’Toole PW, Claesson MJ. Gut microbiota: changes throughout the lifespan from infancy to elderly. Int Dairy J. 2010;20: 281–291. doi: 10.1016/J.IDAIRYJ.2009.11.010

12. Vaiserman AM, Koliada AK, Marotta F. Gut microbiota: a player in aging and a target for anti-aging intervention. Ageing Res Rev. 2017;35: 36–45. doi: 10.1016/j.arr.2017.01.001 28109835

13. van Tongeren SP, Slaets JP, Harmsen HJ, Welling GW. Fecal microbiota composition and frailty. Appl Environ Microbiol. 2005;71: 6438–42. doi: 10.1128/AEM.71.10.6438-6442.2005 16204576

14. Claesson MJ, Jeffery IB, Conde S, Power SE, O’Connor EM, Cusack S, et al. Gut microbiota composition correlates with diet and health in the elderly. Nature. 2012;488: 178–184. doi: 10.1038/nature11319 22797518

15. Fransen F, van Beek AA, Borghuis T, El Aidy S, Hugenholtz F, van der Gaast-de Jongh C, et al. Aged gut microbiota contributes to systemical inflammaging after transfer to germ-free mice. Front Immunol. 2017;8: 1385. doi: 10.3389/fimmu.2017.01385 29163474

16. Biagi E, Candela M, Turroni S, Garagnani P, Franceschi C, Brigidi P. Ageing and gut microbes: perspectives for health maintenance and longevity. Pharmacol Res. 2013;69: 11–20. doi: 10.1016/j.phrs.2012.10.005 23079287

17. Fact Sheet: aging in the United States—Population Reference Bureau [Internet].

18. Zhang C, Zhang M, Pang X, Zhao Y, Wang L, Zhao L. Structural resilience of the gut microbiota in adult mice under high-fat dietary perturbations. ISME J. 2012;6: 1848–57. doi: 10.1038/ismej.2012.27 22495068

19. Hildebrandt MA, Hoffmann C, Sherrill-Mix SA, Keilbaugh SA, Hamady M, Chen Y-Y, et al. High-fat diet determines the composition of the murine gut microbiome independently of obesity. Gastroenterology. 2009;137: 1716–24. doi: 10.1053/j.gastro.2009.08.042 19706296

20. Guo X, Li J, Tang R, Zhang G, Zeng H, Wood RJ, et al. High fat diet alters gut microbiota and the expression of paneth cell-antimicrobial peptides preceding changes of circulating inflammatory cytokines. Mediators Inflamm. 2017;2017: 9474896. doi: 10.1155/2017/9474896 28316379

21. Caesar R, Tremaroli V, Kovatcheva-Datchary P, Cani PD, Bäckhed F. Crosstalk between gut microbiota and dietary lipids aggravates WAT inflammation through TLR signaling. Cell Metab. 2015;22: 658–668. doi: 10.1016/j.cmet.2015.07.026 26321659

22. de Wit N, Derrien M, Bosch-Vermeulen H, Oosterink E, Keshtkar S, Duval C, et al. Saturated fat stimulates obesity and hepatic steatosis and affects gut microbiota composition by an enhanced overflow of dietary fat to the distal intestine. AJP Gastrointest Liver Physiol. 2012;303: 589–599. doi: 10.1152/ajpgi.00488.2011 22700822

23. Turnbaugh PJ, Ley RE, Mahowald MA, Magrini V, Mardis ER, Gordon JI. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature. 2006;444: 1027–1031. doi: 10.1038/nature05414 17183312

24. Koliada A, Syzenko G, Moseiko V, Budovska L, Puchkov K, Perederiy V, et al. Association between body mass index and Firmicutes/Bacteroidetes ratio in an adult Ukrainian population. BMC Microbiol. 2017;17: 120. doi: 10.1186/s12866-017-1027-1 28532414

25. Liou AP, Paziuk M, Luevano J-M, Machineni S, Turnbaugh PJ, Kaplan LM. Conserved shifts in the gut microbiota due to gastric bypass reduce host weight and adiposity. Sci Transl Med. 2013;5: 178ra41. doi: 10.1126/scitranslmed.3005687 23536013

26. Duncan SH, Lobley GE, Holtrop G, Ince J, Johnstone AM, Louis P, et al. Human colonic microbiota associated with diet, obesity and weight loss. Int J Obes. 2008;32: 1720–1724. doi: 10.1038/ijo.2008.155 18779823

27. Ridaura VK, Faith JJ, Rey FE, Cheng J, Duncan AE, Kau AL, et al. Gut microbiota from twins discordant for obesity modulate metabolism in mice. Science. 2013;341: 1241214. doi: 10.1126/science.1241214 24009397

28. Huang EY, Leone VA, Devkota S, Wang Y, Brady MJ, Chang EB. Composition of dietary fat source shapes gut microbiota architecture and alters host inflammatory mediators in mouse adipose tissue. J Parenter Enter Nutr. 2013;37: 746–54. doi: 10.1177/0148607113486931 23639897

29. Chiu C-C, Ching Y-H, Li Y-P, Liu J-Y, Huang Y-T, Huang Y-W, et al. Nonalcoholic fatty liver disease is exacerbated in high-fat diet-fed gnotobiotic mice by colonization with the gut microbiota from patients with nonalcoholic steatohepatitis. Nutrients. 2017;9: 1220. doi: 10.3390/nu9111220 29113135

30. Lecomte V, Kaakoush NO, Maloney CA, Raipuria M, Huinao KD, Mitchell HM, et al. Changes in gut microbiota in rats fed a high fat diet correlate with obesity-associated metabolic parameters. PLoS One. 2015;10: e0126931. doi: 10.1371/journal.pone.0126931 25992554

31. Karp NA, Mason J, Beaudet AL, Benjamini Y, Bower L, Braun RE, et al. Prevalence of sexual dimorphism in mammalian phenotypic traits. Nat Commun. 2017;8: 15475. doi: 10.1038/ncomms15475 28650954

32. Mueller S, Saunier K, Hanisch C, Norin E, Alm L, Midtvedt T, et al. Differences in fecal microbiota in different European study populations in relation to age, gender, and country: a cross-sectional study. Appl Environ Microbiol. 2006; 1027–33. doi: 10.1128/AEM.72.2.1027-1033.2006 16461645

33. Bridgewater LC, Zhang C, Wu Y, Hu W, Zhang Q, Wang J, et al. Gender-based differences in host behavior and gut microbiota composition in response to high fat diet and stress in a mouse model. Sci Rep. 2017;7: 10776. doi: 10.1038/s41598-017-11069-4 28883460

34. Borgo F, Garbossa S, Riva A, Severgnini M, Luigiano C, Benetti A, et al. Body mass index and sex affect diverse microbial niches within the gut. Front Microbiol. 2018;9: 213. doi: 10.3389/fmicb.2018.00213 29491857

35. Org E, Mehrabian M, Parks BW, Shipkova P, Liu X, Drake TA, et al. Sex differences and hormonal effects on gut microbiota composition in mice. Gut Microbes. 2016;7: 313–322. doi: 10.1080/19490976.2016.1203502 27355107

36. Bolnick DI, Snowberg LK, Hirsch PE, Lauber CL, Org E, Parks B, et al. Individual diet has sex-dependent effects on vertebrate gut microbiota. Nat Commun. 2014;5: 4500. doi: 10.1038/ncomms5500 25072318

37. Shastri P, McCarville J, Kalmokoff M, Brooks SPJ, Green-Johnson JM. Sex differences in gut fermentation and immune parameters in rats fed an oligofructose-supplemented diet. Biol Sex Differ. 2015;6: 13. doi: 10.1186/s13293-015-0031-0 26251695

38. Haro C, Rangel-Zúñiga OA, Alcalá-díaz JF, Gómez-Delgado F, Pérez-martínez P, Delgado-Lista J, et al. Intestinal microbiota is influenced by gender and body mass index. PLoS Biol. 2016;11: 1–16.

39. Ervin RB, Wright JD, Wang C-Y, Kennedy-Stephenson J. Dietary intake of fats and fatty acids for the United States population: 1999–2000. Adv Data. 2004; 1–6.

40. Ley RE, Bäckhed F, Turnbaugh P, Lozupone CA, Knight RD, Gordon JI. Obesity alters gut microbial ecology. Proc Natl Acad Sci USA. 2005;102: 11070–5. doi: 10.1073/pnas.0504978102 16033867

41. Ley RE, Turnbaugh PJ, Klein S, Gordon JI. Human gut microbes associated with obesity. Nature. Nature Publishing Group; 2006;444: 1022–1023. doi: 10.1038/4441022a 17183309

42. Byerley LO, Samuelson D, Blanchard E, Luo M, Lorenzen BN, Banks S, et al. Changes in the gut microbial communities following addition of walnuts to the diet. J Nutr Biochem. 2017;48: 94–102. doi: 10.1016/j.jnutbio.2017.07.001 28797931

43. Martínez ML, Labuckas DO, Lamarque AL, Maestri DM. Walnut (Juglans regia L.): genetic resources, chemistry, by-products. J Sci Food Agric. 2010;90. doi: 10.1002/jsfa.4059 20586084

44. Walsh H, Haq H, Cersosimo LM, Kien CL, Kraft J. Decreased abundance of Firmicutes in the gut microbiota after consumption of a diet containing milk fats. FASEB J. 2016;683.11.

45. Parker KD, Albeke SE, Gigley JP, Goldstein AM, Ward NL. Microbiome composition in both wild-type and disease model mice is heavily influenced by mouse facility. Front Microbiol. 2018;9: 1598. doi: 10.3389/fmicb.2018.01598 30079054

46. Mosca A, Leclerc M, Hugot JP. Gut microbiota diversity and human diseases: should we reintroduce key predators in our ecosystem? Front Microbiol. 2016;7: 455. doi: 10.3389/fmicb.2016.00455 27065999

47. Menni C, Zierer J, Pallister T, Jackson MA, Long T, Mohney RP, et al. Omega-3 fatty acids correlate with gut microbiome diversity and production of N-carbamylglutamate in middle aged and elderly women. Sci Rep. 2017;7: 11079. doi: 10.1038/s41598-017-10382-2 28894110

48. Cui C, Li Y, Gao H, Zhang H, Han J, Zhang D, et al. Modulation of the gut microbiota by the mixture of fish oil and krill oil in high-fat diet-induced obesity mice. PLoS One. 2017;12: e0186216. doi: 10.1371/journal.pone.0186216 29016689

49. Heiman ML, Greenway FL. A healthy gastrointestinal microbiome is dependent on dietary diversity. Mol Metab. 2016;5: 317–320. doi: 10.1016/j.molmet.2016.02.005 27110483

50. Xiao L, Sonne SB, Feng Q, Chen N, Xia Z, Li X, et al. High-fat feeding rather than obesity drives taxonomical and functional changes in the gut microbiota in mice. Microbiome. 2017;5: 43. doi: 10.1186/s40168-017-0258-6 28390422

51. Rabot S, Membrez M, Blancher F, Berger B, Moine D, Krause L, et al. High fat diet drives obesity regardless the composition of gut microbiota in mice. Sci Rep. 2016;6: 32484. doi: 10.1038/srep32484 27577172

52. Mariat D, Firmesse O, Levenez F, Guimarăes V, Sokol H, Doré J, et al. The Firmicutes/Bacteroidetes ratio of the human microbiota changes with age. BMC Microbiol. 2009;9: 123. doi: 10.1186/1471-2180-9-123 19508720

53. Claesson MJ, Cusack S, O’Sullivan O, Greene-Diniz R, de Weerd H, Flannery E, et al. Composition, variability, and temporal stability of the intestinal microbiota of the elderly. Proc Natl Acad Sci. 2011;108: 4586–4591. doi: 10.1073/pnas.1000097107 20571116

54. Bischoff SC. Microbiota and aging. Curr Opin Clin Nutr Metab Care. 2016;19: 26–30. doi: 10.1097/MCO.0000000000000242 26560527

55. Scott KA, Ida M, Peterson VL, Prenderville JA, Moloney GM, Izumo T, et al. Revisiting Metchnikoff: age-related alterations in microbiota-gut-brain axis in the mouse. Brain Behav Immun. 2017;65: 20–32. doi: 10.1016/j.bbi.2017.02.004 28179108

56. Yurkovetskiy L, Burrows M, Khan AA, Graham L, Volchkov P, Becker L, et al. Gender bias in autoimmunity is influenced by microbiota. Immunity. 2013;39: 400–412. doi: 10.1016/j.immuni.2013.08.013 23973225

57. Wallis A, Butt H, Ball M, Lewis DP, Bruck D. Support for the microgenderome invites enquiry into sex differences. Gut Microbes. 2017;8: 46–52. doi: 10.1080/19490976.2016.1256524 27808584

58. Markle JGM, Frank DN, Mortin-Toth S, Robertson CE, Feazel LM, Rolle-Kampczyk U, et al. Sex differences in the gut microbiome drive hormone-dependent regulation of autoimmunity. Science (80-). 2013;339: 1084–1088. doi: 10.1126/science.1233521 23328391

59. Maita K, Hirano M, Harada T, Mitsumori K, Yoshida A, Takahashi K, et al. Mortality, major cause of moribundity, and spontaneous tumors in CD-1 mice. Toxicol Pathol. 1988;16: 340–9. doi: 10.1177/019262338801600305 3194656

60. Mathews CE, Bagley R, Leiter EH. ALS/Lt: a new Type 2 Diabetes mouse model associated with low free radical scavenging potential. Diabetes. 2004;53.

61. CD-1® IGS Mouse | Charles River [Internet].

62. Bainbridge ML, Lock AL, Kraft J. Lipid-encapsulated echium oil (Echium plantagineum) increases the content of stearidonic acid in plasma lipid fractions and milk fat of dairy cows. J Agric Food Chem. 2015;63: 4827–4835. doi: 10.1021/acs.jafc.5b00857 25904162

63. Yu Z, Morrison M. Improved extraction of PCR-quality community DNA from digesta and fecal samples. Biotechniques. 2004;36: 808–812. doi: 10.2144/04365ST04 15152600

64. Cersosimo LM, Lachance H, St-Pierre B, van Hoven W, Wright ADG. Examination of the rumen bacteria and methanogenic archaea of wild impalas (Aepyceros melampus melampus) from Pongola, South Africa. Microb Ecol. 2015;69: 577–585. doi: 10.1007/s00248-014-0521-3 25351144

65. Denman SE, McSweeney CS. Development of a real-time PCR assay for monitoring anaerobic fungal and cellulolytic bacterial populations within the rumen. FEMS Microbiol Ecol. 2006;58: 572–582. doi: 10.1111/j.1574-6941.2006.00190.x 17117998

66. Salgado-Flores A, Hagen LH, Ishaq SL, Zamanzadeh M, Wright A-DG, Pope PB, et al. Rumen and cecum microbiomes in reindeer (Rangifer tarandus tarandus) are changed in response to a lichen diet and may affect enteric methane emissions. PLoS One. 2016;11: e0155213. doi: 10.1371/journal.pone.0155213 27159387

67. McMurdie PJ, Holmes S. Phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS One. 2013;8. doi: 10.1371/journal.pone.0061217 23630581

68. Albertsen M, Karst SM, Ziegler AS, Kirkegaard RH, Nielsen PH. Back to basics—the influence of DNA extraction and primer choice on phylogenetic analysis of activated sludge communities. PLoS One. 2015;10: e0132783. doi: 10.1371/journal.pone.0132783 26182345

69. Robinson MD, McCarthy DJ, Smyth GK. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics. 2010;26: 139–40. doi: 10.1093/bioinformatics/btp616 19910308

70. Oksanen J, Blanchet FG, Friendly M, Kindt R, Legendre P, McGlinn D, et al. Vegan: community ecology package [Internet]. 2017.

Článek vyšel v časopise


2019 Číslo 12