Four months vitamin D supplementation to vitamin D insufficient individuals does not improve muscular strength: A randomized controlled trial


Autoři: Guri Grimnes aff001;  Julia Kubiak aff001;  Rolf Jorde aff001
Působiště autorů: Tromsø Endocrine Research Group, Department of Clinical Medicine, UiT The Arctic University of Norway, Tromsø, Norway aff001;  Division of Internal Medicine, University Hospital of North Norway, Tromsø, Norway aff002
Vyšlo v časopise: PLoS ONE 14(12)
Kategorie: Research Article
doi: 10.1371/journal.pone.0225600

Souhrn

Main objective

The inconsistent results on the effects of vitamin D on muscle strength reported by intervention trials may partly be explained by inclusion of vitamin D sufficient individuals. The main objective was to study whether vitamin D supplementation will improve muscle strength in men and women with low serum vitamin D status, as measured by 25-hydroxyvitamin D (25(OH)D) at baseline.

Methods

417 men and women aged 40–80 years were included and randomized to receive a loading dose of 100 000 IU (2500 ug) vitamin D3 followed by 20 000 IU (500 ug)/week, or placebo. Muscle strength was tested by dynamometers at baseline and after four months.

Results

Serum 25(OH)D levels increased from 32.6±11.1 nmol/l to 88.8±19.4 nmol/l (p<0.01) in the vitamin D group, while remaining low in the placebo group (baseline and final levels at 35.1±13.6 nmol/l and 30.7 ±9.7 nmol/l respectively). Muscle strength (hip flexion, biceps flexion, pectorals and handgrip strength) did not change in any of the groups. The results were the same in analyses stratified on sex, 25(OH)D above/below 25 nmol/L (10 ng/ml); smoking status; and BMI above/below 27 kg/m2.

Conclusion

These data does not support vitamin D supplementation for improving muscle strength.

Klíčová slova:

Hand strength – Muscle analysis – Nurses – Randomized controlled trials – Skeletal muscles


Zdroje

1. Cashman KD, Dowling KG, Skrabakova Z, Gonzalez-Gross M, Valtuena J, De Henauw S, et al. Vitamin D deficiency in Europe: pandemic? Am J Clin Nutr. 2016; 103(4):1033–1044. doi: 10.3945/ajcn.115.120873 26864360

2. Holick MF. The vitamin D deficiency pandemic and consequences for nonskeletal health: mechanisms of action. Mol Aspects Med. 2008;29(6):361–368. doi: 10.1016/j.mam.2008.08.008 18801384

3. Reid IR. Vitamin D effect on bone mineral density and fractures. Endocrinol Metab Clin North Am. 2017;46(4):935–945. doi: 10.1016/j.ecl.2017.07.005 29080644

4. Bolland MJ, Grey A, Avenell A. Effects of vitamin D supplementation on musculoskeletal health: a systematic review, meta-analysis, and trial sequential analysis. Lancet Diabetes Endocrinol. 2018;6(11):847–858. doi: 10.1016/S2213-8587(18)30265-1 30293909

5. Munns CF, Shaw N, Kiely M, Specker BL, Thacher TD, Ozono K, et al. Global consensus recommendations on prevention and management of nutritional rickets. J Clin Endocrinol Metab. 2016;101(2):394–415. doi: 10.1210/jc.2015-2175 26745253

6. Girgis CM, Mokbel N, Cha KM, Houweling PJ, Abboud M, Fraser DR, et al. The vitamin D receptor (VDR) is expressed in skeletal muscle of male mice and modulates 25-hydroxyvitamin D (25(OH)D) uptake in myofibers. Endocrinology. 2014;155(9):3227–3237. doi: 10.1210/en.2014-1016 24949660

7. Bischoff-Ferrari HA, Borchers M, Gudat F, Durmuller U, Stahelin HB, Dick W. Vitamin D receptor expression in human muscle tissue decreases with age. J Bone Miner Res. 2004;19(2):265–269. doi: 10.1359/jbmr.2004.19.2.265 14969396

8. Wicherts IS, van Schoor NM, Boeke AJ, Visser M, Deeg DJ, Smit J, et al. Vitamin D status predicts physical performance and its decline in older persons. J Clin Endocrinol Metab. 2007;92(6):2058–2065. doi: 10.1210/jc.2006-1525 17341569

9. Bischoff-Ferrari HA, Dietrich T, Orav EJ, Hu FB, Zhang Y, Karlson EW, et al. Higher 25-hydroxyvitamin D concentrations are associated with better lower-extremity function in both active and inactive persons aged > or = 60 y. Am J Clin Nutr. 2004;80(3):752–758. doi: 10.1093/ajcn/80.3.752 15321818

10. Yoshikawa S, Nakamua T, Tanabe H, Imamura T. Osteomalacic myopathy. Endocrinol Jpn. 1979;26:65–72.

11. Gilsanz V, Kremer A, Mo AO, Wren TA, Kremer R. Vitamin D status and its relation to muscle mass and muscle fat in young women. J Clin Endocrinol Metab. 2010;95:1595–601. doi: 10.1210/jc.2009-2309 20164290

12. Sinha A, Hollinsworth KG, Ball S, Cheetham T. Improving the vitamin D status of vitamin D deficient adults is associated with improved mitochondrial oxidative function in skeletal muscle. J Clin Endocrinol Metab. 2013;98(3):E509–513. doi: 10.1210/jc.2012-3592 23393184

13. Girgis CM, Clifton-Bligh RJ, Turner N, Lau SL, Gunton JE. Effects of vitamin D in skeletal muscle: falls, strength, athletic performance and insulin sensitivity. Clin Endocrinol (Oxf). 2014;80(2):169–81.

14. Beaudart C, Buckinx F, Rabenda V, Gillain S, Cavalier E, Slomian J, et al. The effects of vitamin D on skeletal strength, muscle mass, and muscle power: a systematic review and meta-analysis of randomized controlled trials. J Clin Endocrinol Metab. 2014;99(11):4336–4345. doi: 10.1210/jc.2014-1742 25033068

15. Rosendahl-Riise H, Spiielau U, Ranhoff AH, Gudbrandsen OA, Dierkes J. Vitamin D supplementation and its influence on muscle strength and mobility in community-dwelling older persons: a systematic review and meta-analysis. J Hum Nutr Diet. 2017;30(1):3–15. doi: 10.1111/jhn.12394 27460044

16. Heaney RP. Guidelines for optimizing design and analysis of clinical studies of nutrient effects. Nutr Rev. 2014;72(1):48–54. doi: 10.1111/nure.12090 24330136

17. Scragg R. Limitations of vitamin D supplementation trials: Why observational studies will continue to help determine the role of vitamin D in health. J Steroid Biochem Mol Biol. 2018;177:6–9. doi: 10.1016/j.jsbmb.2017.06.006 28627485

18. Jacobsen BK, Eggen AE, Mathiesen EB, Wilsgaard T, Njolstad I. Cohort profile: the Tromsø Study. Int J Epidemiol. 2012;41(4):961–967. doi: 10.1093/ije/dyr049 21422063

19. Kubiak J, Thorsby PM, Kamycheva E, Jorde R. Vitamin D supplementation does not improve CVD risk factors in vitamin D-insufficient subjects. Endocr Connect. 2018;7(6):840–849. doi: 10.1530/EC-18-0144 29764903

20. Stark T, Walker B, Phillips JK, Fejer R, Beck R. Hand-held dynamometry correlation with the gold standard isokinetic dynamometry: a systematic review. Pm R. 2011;3(5):472–479. doi: 10.1016/j.pmrj.2010.10.025 21570036

21. Thorborg K, Bandholm T, Holmich P. Hip- and knee-strength assessments using a hand-held dynamometer with external belt–fixation are inter-tester reliable. Knee Surg Sports Traumatol Arthrosc. 2013;21(3):550–555. doi: 10.1007/s00167-012-2115-2 22773065

22. Sollid ST, Hutchinson MY, Fuskevag OM, Figenschau Y, Joakimsen RM, Schirmer H, et al. No effect of high-dose vitamin D supplementation on glycemic status or cardiovascular risk factors in subjects with prediabetes. Diabetes Care. 2014;37(8):2123–2131. doi: 10.2337/dc14-0218 24947792

23. Uusi-Rasi K, Patil R, Karinkanta S, Kannus P, Tokola K, Lamberg-Allartdt C, et al. A 2-year follow-up after a 2-year RCT with vitamin D and exercise: effects on falls, injurious falls and physical functioning among older women. J Gerontol A Biol Sci Med Sci. 2017;72(9):1239–1245. doi: 10.1093/gerona/glx044 28369286

24. Levis S, Gomez-Marin O. Vitamin D and physical function in sedentary older men. J Am Geriatr Soc. 2017;65(2):323–331. doi: 10.1111/jgs.14510 27861700

25. Ranathunga R, Hill TR, Mathers JC, Francis RM, Prentice A, Schoenmakers I, et al. No effect of monthly supplementation with 12000 IU, 24000 IU or 48000 IU vitamin D3 for one year on muscle function: The vitamin D in older people study. J Steroid Biochem Mol Biol. 2018 pii: S0960-0760(18)30494-1. doi: 10.1016/j.jsbmb.2018.12.008 30583082

26. Bislev SL, Lanagergaard Rødbro L, Rolighed L, Sikjaer T, Rejnmark L. Effects of vitamin D3 supplementation on muscle strength, mass, and physical performance in women with vitamin D insufficiency: a randomized placebo-controlled trial. Calcif Tissue Int. 2018;103(5):483–493. doi: 10.1007/s00223-018-0443-z 29931459

27. Wu F, Wills K, Laslett LL, Oldenburd B, Seibel MJ, Jones G, et al. Cut-points for associations between vitamin D status and multiple musculoskeletal outcomes in middle-aged women. Osteoporos Int. 2017;116(8):505–515.

28. Liguori I, Russo G, Aran L, Bulli G, Curcio F, Della-Morte D, et al. Sarcopenia: assessment of disease burden and strategies to improve outcomes. Clin Interv Aging. 2018;26:13:757–772. doi: 10.2147/CIA.S158513 29731617

29. Shin SC, Kim KM. Calcium, is it better to have less? Global health perspectives. J Cell Biochem. 2015;116(8):1513–1521. doi: 10.1002/jcb.25119 25648107

30. Lips P. Interaction between vitamin D and calcium. Scand J Clin Lab Invest Suppl. 2012;243:60–64. doi: 10.3109/00365513.2012.681960 22536764

31. Bunout D, Barrera G, Leiva L, Gattas V, de la Maza MP, Avendano M, et al. Effects of vitamin D supplementation and exercise training on physical performance in Chilean vitamin D deficient elderly subjects. Exp. Gerontol. 2006;41(8):746–752. doi: 10.1016/j.exger.2006.05.001 16797903

32. Jorde R, Grimnes G. Serum cholecalciferol may be a better marker of vitamin D status than 25-hydroxyvitamin D. Med Hypotheses. 2018;111:61–65. doi: 10.1016/j.mehy.2017.12.017 29406999

33. Cangussu LM, Nahas-Neto J, Orsatti CL, Bueloni-Dias FN, Nahas EA. Effect of vitamin D supplementation alone on muscle function in postmenopausal women: a randomized, double-blind, placebo-controlles clinical trial. Osteoporos Int. 2015;26(10):2413–2421. doi: 10.1007/s00198-015-3151-9 25956283

34. Hassan-Smith ZK, Jenkinson C, Smith DJ, Hernandez I, Morgan SA, Crabtree NJ, et al. 25-hydroxyvitamin D3 and 1,25-dihydroxyvitamin D3 exert distinct effects on human skeletal muscle function and gene expression. PLoS One. 2017;12(2): e0170665. doi: 10.1371/journal.pone.0170665 28199350

35. Capatina C, Caragheorgheopol A, Berteanu M, Poiana C. Short-term administration of alphacalcidiopl is associated with more significant improvement of muscular performance in women with vitamin D deficiency compared to native vitamin D. Exp Clin Endocrinol Diabetes. 2016;124(8):461–465. doi: 10.1055/s-0042-103932 27169685


Článek vyšel v časopise

PLOS One


2019 Číslo 12