Effects of experimentally induced fatigue on healthy older adults’ gait: A systematic review


Autoři: Paulo Cezar Rocha dos Santos aff001;  Fabio Augusto Barbieri aff003;  Inge Zijdewind aff004;  Lilian Teresa Bucken Gobbi aff002;  Claudine Lamoth aff001;  Tibor Hortobágyi aff001
Působiště autorů: Center for Human Movement Sciences, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands aff001;  Posture and Gait Studies Laboratory (LEPLO), Graduate Program in Movement Sciences, Institute of Biosciences, São Paulo State University (UNESP), Rio Claro, Brazil aff002;  Human Movement Research Laboratory (MOVI-LAB), Graduate Program in Movement Sciences, Department of Physical Education, São Paulo State University (UNESP), Bauru, Brazil aff003;  Department of Biomedical Sciences of Cells and Systems, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands aff004
Vyšlo v časopise: PLoS ONE 14(12)
Kategorie: Research Article
doi: 10.1371/journal.pone.0226939

Souhrn

Introduction

While fatigue is ubiquitous in old age and visibly interferes with mobility, studies have not yet examined the effects of self-reported fatigue on healthy older adults’ gait. As a model that simulates this daily phenomenon, we systematically reviewed eleven studies that compared the effects of experimentally induced muscle and mental performance fatigability on gait kinematics, variability, kinetics, and muscle activity in healthy older adults.

Methods

We searched for studies in databases (PubMed and Web of Science) using Fatigue, Gait, and Clinical conditions as the main terms and extracted the data only from studies that experimentally induced fatigue by sustained muscle or mental activities in healthy older adults.

Results

Eleven studies were included. After muscle performance fatigability, six of nine studies observed increases in stride length, width, gait velocity (Effect Size [ES] range: 0.30 to 1.22), inter-stride trunk acceleration variability (ES: 2.06), and ankle muscle coactivation during gait (ES: 0.59, n = 1 study). After sustained mental activity, the coefficient of variation of stride outcomes increased (ES: 0.59 to 0.67, n = 1 study) during dual-task but not single-task walking.

Conclusion

Muscle performance fatigability affects spatial and temporal features of gait and, mainly, inter-stride trunk acceleration variability. In contrast, sustained mental activity tends only to affect step variability during dual tasking. A critical and immediate step for future studies is to determine the effects of self-reported fatigue on gait biomechanics and variability in healthy older adults to verify the viability of experimentally induced fatigue as a model for the study of gait adaptability in old age.

Klíčová slova:

Acceleration – Ankles – Elderly – Fatigue – Gait analysis – Kinematics – Knees – Walking


Zdroje

1. Alexander NB, Taffet GE, Horne FM, Eldadah BA, Ferrucci L, Nayfield S, et al. Bedside-to-Bench conference: research agenda for idiopathic fatigue and aging. J Am Geriatr Soc. 2010;58: 967–975. doi: 10.1111/j.1532-5415.2010.02811.x 20722821

2. Lewis G, Wessely S. The epidemiology of fatigue: more questions than answers. J Epidemiol Community Health. 1992;46: 92–97. doi: 10.1136/jech.46.2.92 1583440

3. Liao S, Ferrell BA. Fatigue in an older population. J Am Geriatr Soc. 2000;48: 426–30. Available: http://www.ncbi.nlm.nih.gov/pubmed/10798471 doi: 10.1111/j.1532-5415.2000.tb04702.x 10798471

4. Stackhouse SK, Stevens JE, Lee SC, Pearce KM, Snyder-Mackler L, Binder-Macleod SA. Maximum voluntary activation in nonfatigued and fatigued muscle of young and elderly individuals. Phys Ther. 2001;81: 1102–9. Available: http://www.ncbi.nlm.nih.gov/pubmed/11319935 11319935

5. Rannou F, Nybo L, Andersen JE, Nordsborg NB. Monitoring Muscle Fatigue Progression during Dynamic Exercise. Med Sci Sport Exerc. 2019; 1. doi: 10.1249/MSS.0000000000001921 30741747

6. Gandevia SC. Spinal and supraspinal factors in human muscle fatigue. Physiol Rev. 2001;81: 1725–1789. doi: 10.1152/physrev.2001.81.4.1725 11581501

7. Boksem MAS, Meijman TF, Lorist MM. Effects of mental fatigue on attention: An ERP study. Cogn Brain Res. 2005;25: 107–116. doi: 10.1016/j.cogbrainres.2005.04.011 15913965

8. Enoka RM, Duchateau J. Translating Fatigue to Human Performance. Med Sci Sport Exerc. 2016;48: 2228–2238. doi: 10.1249/MSS.0000000000000929 27015386

9. Davis JM. Central and peripheral factors in fatigue. J Sports Sci. Taylor & Francis Group; 1995;13: S49–S53. doi: 10.1080/02640419508732277 8897320

10. Grenier JG, Millet GY, Peyrot N, Samozino P, Oullion R, Messonnier L, et al. Effects of extreme-duration heavy load carriage on neuromuscular function and locomotion: a military-based study. Lucia A, editor. PLoS One. 2012;7: e43586. doi: 10.1371/journal.pone.0043586 22927995

11. Salavati M, Moghadam M, Ebrahimi I, Arab AM. Changes in postural stability with fatigue of lower extremity frontal and sagittal plane movers. Gait Posture. 2007;26: 214–8. doi: 10.1016/j.gaitpost.2006.09.001 17049237

12. Paillard T. Effects of general and local fatigue on postural control: A review. Neurosci Biobehav Rev. Pergamon; 2012;36: 162–176. doi: 10.1016/j.neubiorev.2011.05.009 21645543

13. Boksem MAS, Tops M. Mental fatigue: Costs and benefits. Brain Res Rev. 2008;59: 125–139. doi: 10.1016/j.brainresrev.2008.07.001 18652844

14. Lorist MM, Boksem MAS, Ridderinkhof KR. Impaired cognitive control and reduced cingulate activity during mental fatigue. Cogn Brain Res. 2005;24: 199–205. doi: 10.1016/j.cogbrainres.2005.01.018 15993758

15. Wascher E, Rasch B, Sänger J, Hoffmann S, Schneider D, Rinkenauer G, et al. Frontal theta activity reflects distinct aspects of mental fatigue. Biol Psychol. 2014;96: 57–65. doi: 10.1016/j.biopsycho.2013.11.010 24309160

16. de Jong M, Jolij J, Pimenta A, Lorist MM. Age Modulates the Effects of Mental Fatigue on Typewriting. Front Psychol. 2018;9: 1113. doi: 10.3389/fpsyg.2018.01113 30042705

17. Van Cutsem J, Marcora S, De Pauw K, Bailey S, Meeusen R, Roelands B. The Effects of Mental Fatigue on Physical Performance: A Systematic Review. Sport Med. 2017;47: 1569–1588. doi: 10.1007/s40279-016-0672-0 28044281

18. Pires FO, Silva-Júnior FL, Brietzke C, Franco-Alvarenga PE, Pinheiro FA, de França NM, et al. Mental Fatigue Alters Cortical Activation and Psychological Responses, Impairing Performance in a Distance-Based Cycling Trial. Front Physiol. Frontiers Media SA; 2018;9: 227. doi: 10.3389/fphys.2018.00227 29615923

19. Lorist MM. Impact of top-down control during mental fatigue. Brain Res. 2008;1232: 113–123. doi: 10.1016/j.brainres.2008.07.053 18687317

20. Mizuno K, Tanaka M, Yamaguti K, Kajimoto O, Kuratsune H, Watanabe Y. Mental fatigue caused by prolonged cognitive load associated with sympathetic hyperactivity. Behav Brain Funct. BioMed Central; 2011;7: 17. doi: 10.1186/1744-9081-7-17 21605411

21. Morrison S, Colberg SR, Parson HK, Neumann S, Handel R, Vinik EJ, et al. Walking-Induced Fatigue Leads to Increased Falls Risk in Older Adults. J Am Med Dir Assoc. 2016;17: 402–409. doi: 10.1016/j.jamda.2015.12.013 26825684

22. Lew FL, Qu X. Effects of mental fatigue on biomechanics of slips. Ergonomics. 2014;57: 1927–32. doi: 10.1080/00140139.2014.937771 25017252

23. Nagano H, James L, Sparrow WA, Begg RK. Effects of walking-induced fatigue on gait function and tripping risks in older adults. J Neuroeng Rehabil. 2014;11: 155. doi: 10.1186/1743-0003-11-155 25399324

24. Parijat P, Lockhart TE. Effects of quadriceps fatigue on the biomechanics of gait and slip propensity. Gait Posture. 2008;28: 568–73. doi: 10.1016/j.gaitpost.2008.04.001 18514522

25. Barbieri FA, dos Santos PCR, Simieli L, Orcioli-Silva D, Van Dieën JH, Gobbi LTB. Interactions of age and leg muscle fatigue on unobstructed walking and obstacle crossing. Gait Posture. Elsevier; 2014;39: 985–990. doi: 10.1016/j.gaitpost.2013.12.021 24440157

26. Hatton AL, Menant JC, Lord SR, Lo JCM, Sturnieks DL. The effect of lower limb muscle fatigue on obstacle negotiation during walking in older adults. Gait Posture. 2013;37: 506–10. doi: 10.1016/j.gaitpost.2012.09.004 23021990

27. Granacher U, Gruber M, Förderer D, Strass D, Gollhofer A. Effects of ankle fatigue on functional reflex activity during gait perturbations in young and elderly men. Gait Posture. 2010;32: 107–12. doi: 10.1016/j.gaitpost.2010.03.016 20434345

28. Barbieri FA, Gobbi LTB, Lee YJ, Pijnappels M, van Dieën JH. Effect of triceps surae and quadriceps muscle fatigue on the mechanics of landing in stepping down in ongoing gait. Ergonomics. 2014;57: 934–942. doi: 10.1080/00140139.2014.903302 24697241

29. Taylor JL, Amann M, Duchateau J, Meeusen R, Rice CL. Neural Contributions to Muscle Fatigue: From the Brain to the Muscle and Back Again. Med Sci Sports Exerc. NIH Public Access; 2016;48: 2294–2306. doi: 10.1249/MSS.0000000000000923 27003703

30. Barbieri FA, Beretta SS, Pereira VAI, Simieli L, Orcioli-Silva D, dos Santos PCR, et al. Recovery of gait after quadriceps muscle fatigue. Gait Posture. 2016;43: 270–4. doi: 10.1016/j.gaitpost.2015.10.015 26531768

31. Bryanton MA, Bilodeau M. The influence of knee extensor fatigue on lower extremity muscle activity during chair rise in young and older adults. Eur J Appl Physiol. 2019;119: 61–71. doi: 10.1007/s00421-018-3999-4 30317389

32. Behrens M, Mau-Moeller A, Lischke A, Katlun F, Gube M, Zschorlich V, et al. Mental Fatigue Increases Gait Variability During Dual-task Walking in Old Adults. J Gerontol A Biol Sci Med Sci. 2018;73: 792–797. doi: 10.1093/gerona/glx210 29077783

33. Verlinden VJA, van der Geest JN, Hofman A, Ikram MA. Cognition and gait show a distinct pattern of association in the general population. Alzheimer’s Dement. 2014;10: 328–335. doi: 10.1016/j.jalz.2013.03.009 23849591

34. Iseki K, Hanakawa T, Shinozaki J, Nankaku M, Fukuyama H. Neural mechanisms involved in mental imagery and observation of gait. Neuroimage. 2008;41: 1021–1031. doi: 10.1016/j.neuroimage.2008.03.010 18450480

35. Zwergal A, Linn J, Xiong G, Brandt T, Strupp M, Jahn K. Aging of human supraspinal locomotor and postural control in fMRI. Neurobiol Aging. 2012;33: 1073–84. doi: 10.1016/j.neurobiolaging.2010.09.022 21051105

36. Lo O-Y, Halko MA, Zhou J, Harrison R, Lipsitz LA, Manor B. Gait Speed and Gait Variability Are Associated with Different Functional Brain Networks. Front Aging Neurosci. 2017;9: 390. doi: 10.3389/fnagi.2017.00390 29249961

37. Studenski S, Perera S, Patel K, Rosano C, Faulkner K, Inzitari M, et al. Gait speed and survival in older adults. JAMA. NIH Public Access; 2011;305: 50–8. doi: 10.1001/jama.2010.1923 21205966

38. Moher D, Liberati A, Tetzlaff J, Altman DG, PRISMA Group. Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement. J Clin Epidemiol. 2009;62: 1006–1012. doi: 10.1016/j.jclinepi.2009.06.005 19631508

39. Higgins J, Green S. Cochrane Handbook for Systematic Reviews of Interventions. 7th ed. Higgins J, Green S, editors. West Sussex: John Wiley & Sons Ltd; 2017.

40. Galna B, Peters A, Murphy AT, Morris ME. Obstacle crossing deficits in older adults: A systematic review. Gait Posture. Elsevier; 2009;30: 270–275. doi: 10.1016/j.gaitpost.2009.05.022 19625191

41. Cohen J. Statistical Power Analysis for the Behavioral Sciences. 2nd. Hillsdale (NJ): Lawrence Erlbaum Associates; 1988.

42. Da Rocha ES, Kunzler MR, Bobbert MF, Duysens J, Carpes FP. 30 min of treadmill walking at self-selected speed does not increase gait variability in independent elderly. J Sports Sci. 2018;36: 1305–1311. doi: 10.1080/02640414.2017.1375139 28869740

43. Hamacher D, Törpel A, Hamacher D, Schega L. The effect of physical exhaustion on gait stability in young and older individuals. Gait Posture. 2016;48: 137–139. doi: 10.1016/j.gaitpost.2016.05.007 27239774

44. Granacher U, Wolf I, Wehrle A, Bridenbaugh S, Kressig RW. Effects of muscle fatigue on gait characteristics under single and dual-task conditions in young and older adults. J Neuroeng Rehabil. 2010;7: 56. doi: 10.1186/1743-0003-7-56 21062458

45. Toebes MJP, Hoozemans MJM, Dekker J, van Dieën JH. Effects of unilateral leg muscle fatigue on balance control in perturbed and unperturbed gait in healthy elderly. Gait Posture. 2014;40: 215–219. doi: 10.1016/j.gaitpost.2014.03.194 24768117

46. Arvin M, Hoozemans MJM, Burger BJ, Rispens SM, Verschueren SMP, van Dieën JH, et al. Effects of hip abductor muscle fatigue on gait control and hip position sense in healthy older adults. Gait Posture. 2015;42: 545–549. doi: 10.1016/j.gaitpost.2015.08.011 26386676

47. Helbostad JL, Leirfall S, Moe-Nilssen R, Sletvold O. Physical fatigue affects gait characteristics in older persons. J Gerontol A Biol Sci Med Sci. 2007;62: 1010–5. doi: 10.1093/gerona/62.9.1010 17895440

48. Hunt MA, Hatfield GL. Ankle and knee biomechanics during normal walking following ankle plantarflexor fatigue. J Electromyogr Kinesiol. 2017;35: 24–29. doi: 10.1016/j.jelekin.2017.05.007 28587934

49. Malatesta D, Canepa M, Menendez Fernandez A. The effect of treadmill and overground walking on preferred walking speed and gait kinematics in healthy, physically active older adults. Eur J Appl Physiol. Springer Berlin Heidelberg; 2017;117: 1833–1843. doi: 10.1007/s00421-017-3672-3 28687953

50. Lee SJ, Hidler J. Biomechanics of overground vs. treadmill walking in healthy individuals. J Appl Physiol. 2008;104: 747–755. doi: 10.1152/japplphysiol.01380.2006 18048582

51. Hollman JH, Watkins MK, Imhoff AC, Braun CE, Akervik KA, Ness DK. A comparison of variability in spatiotemporal gait parameters between treadmill and overground walking conditions. Gait Posture. Elsevier; 2016;43: 204–209. doi: 10.1016/j.gaitpost.2015.09.024 26481257

52. Hanley B, Tucker CB. Gait variability and symmetry remain consistent during high-intensity 10,000 m treadmill running. J Biomech. 2018;79: 129–134. doi: 10.1016/j.jbiomech.2018.08.008 30126720

53. Kellis E, Kellis S. Effects of agonist and antagonist muscle fatigue on muscle coactivation around the knee in pubertal boys. J Electromyogr Kinesiol. 2001;11: 307–318. doi: 10.1016/s1050-6411(01)00014-1 11595550

54. Arellano CJ, Caha D, Hennessey JE, Amiridis IG, Baudry S, Enoka RM. Fatigue-induced adjustment in antagonist coactivation by old adults during a steadiness task. J Appl Physiol. American Physiological Society; 2016;120: 1039–46. doi: 10.1152/japplphysiol.00908.2015 26846553

55. Hortobagyi T, Tracy J, Hamilton G, Lambert J. Fatigue Effects on Muscle Excitability. Int J Sports Med. 1996;17: 409–414. doi: 10.1055/s-2007-972870 8884414

56. Allali G, Montembeault M, Brambati SM, Bherer L, Blumen HM, Launay CP, et al. Brain Structure Covariance Associated with Gait Control in Aging. J Gerontol A Biol Sci Med Sci. 2018; doi: 10.1093/gerona/gly123 29846517

57. Santos PCR, Gobbi LTB, Orcioli-Silva D, Simieli L, van Dieën JH, Barbieri FA. Effects of leg muscle fatigue on gait in patients with Parkinson’s disease and controls with high and low levels of daily physical activity. Gait Posture. 2016;47: 86–91. doi: 10.1016/j.gaitpost.2016.04.002 27264409

58. Tieland M, Trouwborst I, Clark BC. Skeletal muscle performance and ageing. J Cachexia Sarcopenia Muscle. Springer Nature; 2018;9: 3–19. doi: 10.1002/jcsm.12238 29151281


Článek vyšel v časopise

PLOS One


2019 Číslo 12