Examining transmission of gut bacteria to preserved carcass via anal secretions in Nicrophorus defodiens

Autoři: Christopher James Miller aff001;  Scott Thomas Bates aff002;  Lindsay M. Gielda aff002;  J. Curtis Creighton aff001
Působiště autorů: Department of Biological Sciences, Purdue University Northwest, Hammond, IN, United States of America aff001;  Department of Biological Sciences, Purdue University Northwest, Westville, IN, United States of America aff002
Vyšlo v časopise: PLoS ONE 14(12)
Kategorie: Research Article
doi: https://doi.org/10.1371/journal.pone.0225711


Direct transmission of bacteria to subsequent generations highlights the beneficial nature of host-bacteria relationships. In insects, this process is often mediated by the production of microbe-containing secretions. The objective of this study was to determine if the burying beetle, Nicrophorus defodiens, utilizes anal secretions to transmit adult digestive tract bacteria onto a small vertebrate carcass; thus creating the potential to aid in carcass preservation or pass digestive tract bacteria to their larval offspring. Using high-throughput Illumina sequencing of the 16S rRNA gene, we characterized bacterial communities of adult beetle digestive tracts, their anal secretions, and prepared mouse carcasses. We also examined unprepared carcass bacterial communities as a means to interpret community shifts that take place during carcass preservation. We found a vast reduction in diversity on prepared carcasses after anal secretion application. Overall, there was little similarity in bacterial communities among adult digestive tracts, anal secretions, and prepared carcasses, suggesting bacterial communities found in adult digestive tracts do not successfully colonize and achieve dominance on prepared carcasses by way of beetle anal secretions. We concluded that N. defodiens does not transmit their digestive tract bacterial communities to prepared carcasses in a wholesale manner, but may transmit key microbes, including core microbiome members, to preserved carcasses that may ultimately act to sustain larvae and serve as inocula for larval digestive tracts.

Klíčová slova:

Bacteria – Beetles – Clostridium – DNA extraction – Gastrointestinal tract – Insects – Microbiome – Secretion


1. Braendle C, Miura T, Bickel R, Shingleton AW, Kambhampati S, Stern DL. Developmental origin and evolution of bacteriocytes in the aphid–buchnera symbiosis. PLoS Biol. 2003;1(1).

2. Dinan TG, Cryan JF. Gut instincts: microbiota as a key regulator of brain development, ageing and neurodegeneration. J Physiol. 2016;595: 489–503. doi: 10.1113/JP273106 27641441

3. Carlson AL, Xia K, Azcarate-Peril MA, Goldman BD, Ahn M, Styner MA, et al. Infant gut microbiome associated with cognitive development. Biol Psychiatry. 2018;83: 148–159. doi: 10.1016/j.biopsych.2017.06.021 28793975

4. Backhed F. Host-Bacterial Mutualism in the Human Intestine. Science. 2005;307(5717): 1915–1920. doi: 10.1126/science.1104816 15790844

5. Kasubuchi M, Hasegawa S, Hiramatsu T, Ichimura A, Kimura I. Dietary gut microbial metabolites, short-chain fatty acids, and host metabolic regulation. Nutrients. 2015;7: 2839–2849. doi: 10.3390/nu7042839 25875123

6. Hu Y, Sanders JG, Łukasik P, D’Amelio CL, Millar JS, Vann DR, et al. Herbivorous turtle ants obtain essential nutrients from a conserved nitrogen-recycling gut microbiome. Nat Comm. 2018;9.

7. Ferrari J, Scarborough CL, Godfray HCJ. Genetic variation in the effect of a facultative symbiont on host-plant use by pea aphids. Oecologia. 2007;153(2): 323–329. doi: 10.1007/s00442-007-0730-2 17415589

8. Pickard JM, Zeng MY, Caruso R, Núñez G. Gut microbiota: role in pathogen colonization, immune responses, and inflammatory disease. Immunol Rev. 2017;279: 70–89. doi: 10.1111/imr.12567 28856738

9. Buffie CG, Pamer EG. Microbiota-mediated colonization resistance against intestinal pathogens. Nat Rev Immunol. 2013;13: 790–801. doi: 10.1038/nri3535 24096337

10. Macdonald TT, Monteleone G. Human gut-associated lymphoid tissues. Mucosal Immunol. 2005:407–13.

11. Levy M, Blacher E, Elinav E. Microbiome, metabolites, and host immunity. Curr Opin Microbiol. 2017;35: 8–15. doi: 10.1016/j.mib.2016.10.003 27883933

12. Sansone CL, Cohen J, Yasunaga A, Xu J, Osborn G, Subramanian H, et al. Microbiota-dependent priming of antiviral intestinal immunity in Drosophila. Cell Host Microbe. 2015;18: 571–581. doi: 10.1016/j.chom.2015.10.010 26567510

13. Shibata A, Takahashi F, Kasahara M, Imamura N. Induction of maltose release by light in the endosymbiont Chlorella variabilis of Paramecium bursaria. Protist. 2016;167: 468–478. doi: 10.1016/j.protis.2016.08.007 27631277

14. Quinlan RJ, Cherrett JM. Aspects of the symbiosis of the leaf-cutting ant Acromyrmex octospinosus (Reich) and its food fungus. Ecol Entomol. 1978;3(3): 221–230.

15. Currie CR, Scott JA, Summerbell RC, Malloch D. Erratum: Fungus-growing ants use antibiotic-producing bacteria to control garden parasites. Nature. 1999;398(6729): 701–704.

16. Shukla SP, Plata C, Reichelt M, Steiger S, Heckel DG, Kaltenpoth M, et al. Microbiome-assisted carrion preservation aids larval development in a burying beetle. Proc Natl Acad Sci. 2018;115(44): 11274–11279. doi: 10.1073/pnas.1812808115 30322931

17. Strohm E, Linsenmair KE. Females of the European beewolf preserve their honeybee prey against competing fungi. Ecol Entomol. 2001;26(2): 198–203.

18. Duarte A, Welch M, Swannack C, Wagner J, Kilner RM. Strategies for managing rival bacterial communities: Lessons from burying beetles. J Anim Ecol. 2017;87(2): 414–427. doi: 10.1111/1365-2656.12725 28682460

19. Trumbo ST. Monogamy to communal breeding: exploitation of a broad resource base by burying beetles (Nicrophorus). Ecol Entomol. 1992;17(3): 289–298.

20. Scott MP. The ecology and behavior of burying beetles. Annu Rev Entomol. 1998;43(1): 595–618.

21. Trumbo ST, Sikes DS, Philbrick PK. Parental care and competition with microbes in carrion beetles: a study of ecological adaptation. Anim Behav. 2016;118: 47–54.

22. Cotter SC, Kilner RM. Sexual division of antibacterial resource defence in breeding burying beetles, Nicrophorus vespilloides. J Anim Ecol. 2010;79(1): 35–43. doi: 10.1111/j.1365-2656.2009.01593.x 19627394

23. Arce AN, Smiseth PT, Rozen DE. Antimicrobial secretions and social immunity in larval burying beetles, Nicrophorus vespilloides. Anim Behav. 2013;86(4): 741–745.

24. Shukla SP, Vogel H, Heckel DG, Vilcinskas A, Kaltenpoth M. Burying beetles regulate the microbiome of carcasses and use it to transmit a core microbiota to their offspring. Mol Ecol. 2017;27(8): 1980–1991. doi: 10.1111/mec.14269 28748615

25. Vogel H, Shukla SP, Engl T, Weiss B, Fischer R, Steiger S, et al. The digestive and defensive basis of carcass utilization by the burying beetle and its microbiota. Nat Commun. 2017;8: 15186. doi: 10.1038/ncomms15186 28485370

26. Kaltenpoth M, Steiger S. Unearthing carrion beetles microbiome: characterization of bacterial and fungal hindgut communities across the Silphidae. Mol Ecol. 2013;23(6): 1251–1267. doi: 10.1111/mec.12469 24102980

27. Krishnan M, Bharathiraja C, Pandiarajan J, Prasanna VA, Rajendhran J, Gunasekaran P. Insect gut microbiome–An unexploited reserve for biotechnological application. Asian Pac J Trop Biomed. 2014;4: S16–S21. doi: 10.12980/APJTB.4.2014C95 25183073

28. Creighton JC, Smith AN, Komendat A, Belk MC. Dynamics of biparental care in a burying beetle: experimental handicapping results in partner compensation. Behav Ecol Sociobiol. 2014;69(2): 265–271.

29. Metherel AH, Stark KD. Cryopreservation prevents Iron-Initiated Highly unsaturated fatty acid loss during Storage of human blood on chromatography Paper at −20°C. J Nutr. 2015;145(3): 654–660. doi: 10.3945/jn.114.203679 25733485

30. Carini P, Marsden PJ, Leff JW, Morgan EE, Strickland MS, Fierer N. Relic DNA is abundant in soil and obscures estimates of soil microbial diversity. Nat Microbiol. 2016;2(3).

31. Bolyen E, Rideout JR, Dillon MR, Bokulich NA, Abnet C, Al-Ghalith GA, et al. QIIME 2: Reproducible, interactive, scalable, and extensible microbiome data science. PeerJ Preprints. 2018

32. Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, et al. QIIME allows analysis of high-throughput community sequencing data. Nat Methods. 2010;7(5): 335–336. doi: 10.1038/nmeth.f.303 20383131

33. Callahan BJ, Mcmurdie PJ, Rosen MJ, Han AW, Johnson AJA, Holmes SP. DADA2: High-resolution sample inference from Illumina amplicon data. Nat Methods. 2016;13(7): 581–583. doi: 10.1038/nmeth.3869 27214047

34. Bokulich NA, Kaehler BD, Rideout JR, Dillon M, Bolyen E, Knight R, et al. Optimizing taxonomic classification of marker-gene amplicon sequences with QIIME 2’s q2-feature-classifier plugin. Microbiome. 2018;6(1)

35. Price JT, Paladino FV, Lamont MM, Witherington BE, Bates ST, Soule T. Characterization of the juvenile green turtle (Chelonia mydas) microbiome throughout an ontogenetic shift from pelagic to neritic habitats. PLoS One. 2017;12(5).

36. Brown S. P., Veach A. M., Rigdon-Huss A. R., Grond K., Lickteig S. K., Lothamer K., et al. Scraping the bottom of the barrel: are rare high throughput sequences artifacts? Fungal Ecol. 2015;13, 221–225.

37. Gilbert JA, Steele JA, Caporaso JG, Steinbrück L, Reeder J, Temperton B, et al. Defining seasonal marine microbial community dynamics. The ISME Journal. 2011;6(2): 298–308. doi: 10.1038/ismej.2011.107 21850055

38. Dominguez-Bello MG, De Jesus-Laboy KM, Shen N, et al. Partial restoration of the microbiota of cesarean-born infants via vaginal microbial transfer. Nat Med. 2016;22(3):250–3. doi: 10.1038/nm.4039 26828196

39. Shade A, Handelsman J. Beyond the Venn diagram: the hunt for a core microbiome. Environl Microbiol. 2011;14(1): 4–12.

40. Wang Y, Rozen DE. Gut microbiota colonization and transmission in the burying beetle Nicrophorus vespilloides throughout development. Appl Environ Microbiol. 2017;83(9).

41. Toth EM, Schumann P, Borsodi AK, Keki Z, Kovacs AL, Marialigeti K. Wohlfahrtiimonas chitiniclastica gen. nov., sp. nov., a new gammaproteobacterium isolated from Wohlfahrtia magnifica (Diptera: Sarcophagidae). Int J Syst Evol Microbiol. 2008;58(4): 976–81.

42. Lee JK, Lee YY, Park KH, Sim J, Choi Y, Lee S-J. Wohlfahrtiimonas larvae sp. nov., isolated from the larval gut of Hermetia illucens (Diptera: Stratiomyidae). Antonie van Leeuwenhoek. 2013;105(1): 15–21. doi: 10.1007/s10482-013-0048-5 24126466

43. Hall CL, Wadsworth NK, Howard DR, Jennings EM, Farrell LD, Magnuson TS, et al. Inhibition of microorganisms on a carrion breeding resource: the antimicrobial peptide activity of burying beetle (Coleoptera: Silphidae) oral and anal secretions. Environ Entomol. 2011;40(3): 669–678. doi: 10.1603/EN10137 22251646

44. Pramono AK, Sakamoto M, Iino T, Hongoh Y, Ohkuma M. Dysgonomonas termitidis sp. nov., isolated from the gut of the subterranean termite Reticulitermes speratus. Int J Syst Evol Microbiol. 2014;65(Pt 2): 681–685. doi: 10.1099/ijs.0.070391-0 25428419

45. Yang Y-J, Zhang N, Ji S-Q, Lan X, Zhang K-D, Shen Y-L, et al. Dysgonomonas macrotermitis sp. nov., isolated from the hindgut of a fungus-growing termite. Int J Syst Evol Microbiol. 2014;64(Pt 9): 2956–2961. doi: 10.1099/ijs.0.061739-0 24899656

46. Kita A, Aki T, Nakashimada Y, Okamura Y, Kato J, Miura T, et al. Dysgonomonas alginatilytica sp. nov., an alginate-degrading bacterium isolated from a microbial consortium. Int J Syst Evol Microbiol. 2015;65(10): 3570–3575. doi: 10.1099/ijsem.0.000459 26297040

47. Bergogne-Bérézin E, Towner KJ. Acinetobacter spp. as nosocomial pathogens: microbiological, clinical, and epidemiological features. Clin Microbiol Rev. 1996;9(2): 148–165. 8964033

48. Mammeri H, Bellais S, Nordmann P. Chromosome-Encoded -Lactamases TUS-1 and MUS-1 from Myroides odoratus and Myroides odoratimimus (Formerly Flavobacterium odoratum), New Members of the lineage of molecular subclass B1 metalloenzymes. Antimicrob Agents Chemother. 2002;46(11): 3561–3567. doi: 10.1128/AAC.46.11.3561-3567.2002 12384365

49. Dharne M, Gupta A, Rangrez A, Ghate H, Patole M, Shouche Y. Antibacterial activities of multi drug resistant Myroides odoratimimus bacteria isolated from adult flesh flies (Diptera: Sarcophagidae) are independent of metallo beta-lactamase gene. Braz J Microbiol. 2008;39(2): 397–404. doi: 10.1590/S1517-838220080002000035 24031236

50. Stark BC, Dikshit K, Pagilla K. The biochemistry of Vitreoscilla hemoglobin. Comput Struct Biotechnol J. 2012;3(4).

51. Kumar P, Ranawade AV, Kumar NG. Potential probiotic Escherichia coli 16 harboring the Vitreoscilla hemoglobin gene improves gastrointestinal tract colonization and ameliorates carbon tetrachloride induced hepatotoxicity in rats. Biomed Res Int. 2014;213574. doi: 10.1155/2014/213574 25050329

52. Voirol LRP, Frago E, Kaltenpoth M, Hilker M, Fatouros NE. Bacterial symbionts in Lepidoptera: their diversity, transmission, and impact on the host. Front Microbiol. 2018;9.

Článek vyšel v časopise


2019 Číslo 12
Nejčtenější tento týden