Ginkgo biloba extract increases neurite outgrowth and activates the Akt/mTOR pathway

Autoři: Imane Lejri aff001;  Amandine Grimm aff001;  Anne Eckert aff001
Působiště autorů: University of Basel, Neurobiology Lab for Brain Aging and Mental Health, Transfaculty Research Platform Molecular and Cognitive Neuroscience, Basel, Switzerland aff001;  Psychiatric University Clinics, University of Basel, Basel, Switzerland aff002
Vyšlo v časopise: PLoS ONE 14(12)
Kategorie: Research Article
doi: 10.1371/journal.pone.0225761



Standardized Ginkgo biloba extract (GBE) has demonstrated efficacy in the cognitive functional neuropsychiatric symptoms of patients with Alzheimer’s disease (AD). With regard to its underlying molecular mode of action, first evidence was provided that GBE was able to modulate neuronal outgrowth in vitro, but the mechanisms underlying GBE effects on neuroplasticity remain unclear.

Methodology/Principal findings

In this study, we investigated the effect of GBE on neurite outgrowth using SH-SY5Y neuroblastoma cells in a 2D and 3D surface culture. The effects of the GBE LI1370 on neuroplasticity and neurite outgrowth were compared to those of nerve growth factor (NGF, 50 ng/ml) which was used as a positive control. We evaluated several parameters of neurite outgrowth such as the neurite number, total neurite length and extend of branching. Our findings showed that GBE (10 and 100 μg/ml) significantly increased neurite outgrowth in the 2D as well as 3D culture model after 3 days of treatment with a comparable effect than that NGF. The use of the 3D cell culture allowed us to better reproduce the in vivo neuronal microenvironment for the evaluation the neurite formation after GBE treatment. In addition, we assessed the effects of GBE on the Akt/mTOR pathway, which is known to promote neuroplasticity induced by nerve growth factors. We showed that GBE treatment induced an increase of phosphorylated IGF1R (Tyr1135/Tyr1136), Akt (Ser473), TSC2 (Ser939), mTOR (Ser2448), PTEN (Ser380) and GSK3β (Ser9).


Together, these findings indicate that GBE promotes neurite growth and activates the PI3K/Akt/mTOR pathway suggesting that this plant extract supports neuronal plasticity.

Klíčová slova:

Cell cultures – Confocal microscopy – Mitochondria – Neurites – Neuronal plasticity – Phosphorylation – Neuroblastoma cells – Nerve growth factor


1. Eckert A. Mitochondrial effects of Ginkgo biloba extract. Int Psychogeriatr. 2012;24 Suppl 1:S18–20. doi: 10.1017/S1041610212000531 22784423.

2. Zuo W, Yan F, Zhang B, Li J, Mei D. Advances in the Studies of Ginkgo Biloba Leaves Extract on Aging-Related Diseases. Aging Dis. 2017;8(6):812–26. doi: 10.14336/AD.2017.0615 29344418

3. Lejri I, Agapouda A, Grimm A, Eckert A. Mitochondria- and Oxidative Stress-Targeting Substances in Cognitive Decline-Related Disorders: From Molecular Mechanisms to Clinical Evidence. Oxid Med Cell Longev. 2019;2019:9695412. doi: 10.1155/2019/9695412 31214285

4. Muller WE, Eckert A, Eckert GP, Fink H, Friedland K, Gauthier S, et al. Therapeutic efficacy of the Ginkgo special extract EGb761((R)) within the framework of the mitochondrial cascade hypothesis of Alzheimer’s disease. World J Biol Psychiatry. 2019;20(3):173–89. doi: 10.1080/15622975.2017.1308552 28460580.

5. Abdel-Kader R, Hauptmann S, Keil U, Scherping I, Leuner K, Eckert A, et al. Stabilization of mitochondrial function by Ginkgo biloba extract (EGb 761). Pharmacol Res. 2007;56(6):493–502. doi: 10.1016/j.phrs.2007.09.011 17977008.

6. Rendeiro C, Rhodes JS, Spencer JP. The mechanisms of action of flavonoids in the brain: Direct versus indirect effects. Neurochem Int. 2015;89:126–39. doi: 10.1016/j.neuint.2015.08.002 26260546.

7. Rhein V, Giese M, Baysang G, Meier F, Rao S, Schulz KL, et al. Ginkgo biloba extract ameliorates oxidative phosphorylation performance and rescues abeta-induced failure. PLoS One. 2010;5(8):e12359. doi: 10.1371/journal.pone.0012359 20808761

8. Cheng A, Hou Y, Mattson MP. Mitochondria and neuroplasticity. ASN Neuro. 2010;2(5):e00045. doi: 10.1042/AN20100019 20957078

9. Muller WE, Heiser J, Leuner K. Effects of the standardized Ginkgo biloba extract EGb 761(R) on neuroplasticity. Int Psychogeriatr. 2012;24 Suppl 1:S21–4. doi: 10.1017/S1041610212000592 22784424.

10. Rhein V, Song X, Wiesner A, Ittner LM, Baysang G, Meier F, et al. Amyloid-beta and tau synergistically impair the oxidative phosphorylation system in triple transgenic Alzheimer’s disease mice. Proc Natl Acad Sci U S A. 2009;106(47):20057–62. doi: 10.1073/pnas.0905529106 19897719

11. Hou Y, Aboukhatwa MA, Lei DL, Manaye K, Khan I, Luo Y. Anti-depressant natural flavonols modulate BDNF and beta amyloid in neurons and hippocampus of double TgAD mice. Neuropharmacology. 2010;58(6):911–20. doi: 10.1016/j.neuropharm.2009.11.002 19917299

12. Xu Y, Cui C, Pang C, Christen Y, Luo Y. Restoration of impaired phosphorylation of cyclic AMP response element-binding protein (CREB) by EGb 761 and its constituents in Abeta-expressing neuroblastoma cells. Eur J Neurosci. 2007;26(10):2931–9. doi: 10.1111/j.1460-9568.2007.05905.x 18001288.

13. Cunha C, Brambilla R, Thomas KL. A simple role for BDNF in learning and memory? Front Mol Neurosci. 2010;3:1. doi: 10.3389/neuro.02.001.2010 20162032

14. Wang C, Han Z. Ginkgo Biloba Extract Enhances Differentiation and Performance of Neural Stem Cells in Mouse Cochlea. Cell Mol Neurobiol. 2015;35(6):861–9. doi: 10.1007/s10571-015-0180-z 25822771.

15. Greene LA, Tischler AS. Establishment of a noradrenergic clonal line of rat adrenal pheochromocytoma cells which respond to nerve growth factor. Proc Natl Acad Sci U S A. 1976;73(7):2424–8. doi: 10.1073/pnas.73.7.2424 1065897

16. Hefti F. Nerve growth factor promotes survival of septal cholinergic neurons after fimbrial transections. J Neurosci. 1986;6(8):2155–62. doi: 10.1523/JNEUROSCI.06-08-02155.1986 3746405.

17. Fischer W, Wictorin K, Bjorklund A, Williams LR, Varon S, Gage FH. Amelioration of cholinergic neuron atrophy and spatial memory impairment in aged rats by nerve growth factor. Nature. 1987;329(6134):65–8. doi: 10.1038/329065a0 3627243.

18. Rossner S, Ueberham U, Schliebs R, Perez-Polo JR, Bigl V. The regulation of amyloid precursor protein metabolism by cholinergic mechanisms and neurotrophin receptor signaling. Prog Neurobiol. 1998;56(5):541–69. doi: 10.1016/s0301-0082(98)00044-6 9775403.

19. Connor B, Dragunow M. The role of neuronal growth factors in neurodegenerative disorders of the human brain. Brain Res Brain Res Rev. 1998;27(1):1–39. doi: 10.1016/s0165-0173(98)00004-6 9639663.

20. Mattson MP. Mitochondrial regulation of neuronal plasticity. Neurochem Res. 2007;32(4–5):707–15. doi: 10.1007/s11064-006-9170-3 17024568.

21. Sagara Y, Vanhnasy J, Maher P. Induction of PC12 cell differentiation by flavonoids is dependent upon extracellular signal-regulated kinase activation. J Neurochem. 2004;90(5):1144–55. doi: 10.1111/j.1471-4159.2004.02563.x 15312169.

22. Xu SL, Choi RC, Zhu KY, Leung KW, Guo AJ, Bi D, et al. Isorhamnetin, A Flavonol Aglycone from Ginkgo biloba L., Induces Neuronal Differentiation of Cultured PC12 Cells: Potentiating the Effect of Nerve Growth Factor. Evid Based Complement Alternat Med. 2012;2012:278273. doi: 10.1155/2012/278273 22761636

23. Xu SL, Bi CW, Choi RC, Zhu KY, Miernisha A, Dong TT, et al. Flavonoids induce the synthesis and secretion of neurotrophic factors in cultured rat astrocytes: a signaling response mediated by estrogen receptor. Evid Based Complement Alternat Med. 2013;2013:127075. doi: 10.1155/2013/127075 23878590

24. Tchantchou F, Xu Y, Wu Y, Christen Y, Luo Y. EGb 761 enhances adult hippocampal neurogenesis and phosphorylation of CREB in transgenic mouse model of Alzheimer’s disease. FASEB J. 2007;21(10):2400–8. doi: 10.1096/fj.06-7649com 17356006.

25. Tchantchou F, Lacor PN, Cao Z, Lao L, Hou Y, Cui C, et al. Stimulation of neurogenesis and synaptogenesis by bilobalide and quercetin via common final pathway in hippocampal neurons. J Alzheimers Dis. 2009;18(4):787–98. doi: 10.3233/JAD-2009-1189 19661619.

26. Zeng K, Li M, Hu J, Mahaman YAR, Bao J, Huang F, et al. Ginkgo biloba Extract EGb761 Attenuates Hyperhomocysteinemia-induced AD Like Tau Hyperphosphorylation and Cognitive Impairment in Rats. Curr Alzheimer Res. 2018;15(1):89–99. doi: 10.2174/1567205014666170829102135 28847282.

27. Nada SE, Shah ZA. Preconditioning with Ginkgo biloba (EGb 761(R)) provides neuroprotection through HO1 and CRMP2. Neurobiol Dis. 2012;46(1):180–9. doi: 10.1016/j.nbd.2012.01.006 22297164

28. Nada SE, Tulsulkar J, Shah ZA. Heme oxygenase 1-mediated neurogenesis is enhanced by Ginkgo biloba (EGb 761(R)) after permanent ischemic stroke in mice. Mol Neurobiol. 2014;49(2):945–56. doi: 10.1007/s12035-013-8572-x 24154866

29. Li W, Miller WT. Role of the activation loop tyrosines in regulation of the insulin-like growth factor I receptor-tyrosine kinase. J Biol Chem. 2006;281(33):23785–91. doi: 10.1074/jbc.M605269200 16793764.

30. Park KK, Liu K, Hu Y, Kanter JL, He Z. PTEN/mTOR and axon regeneration. Exp Neurol. 2010;223(1):45–50. doi: 10.1016/j.expneurol.2009.12.032 20079353.

31. Maehama T, Dixon JE. The tumor suppressor, PTEN/MMAC1, dephosphorylates the lipid second messenger, phosphatidylinositol 3,4,5-trisphosphate. J Biol Chem. 1998;273(22):13375–8. doi: 10.1074/jbc.273.22.13375 9593664.

32. Oudit GY, Penninger JM. Cardiac regulation by phosphoinositide 3-kinases and PTEN. Cardiovasc Res. 2009;82(2):250–60. doi: 10.1093/cvr/cvp014 19147653.

33. Wyatt LA, Filbin MT, Keirstead HS. PTEN inhibition enhances neurite outgrowth in human embryonic stem cell-derived neuronal progenitor cells. J Comp Neurol. 2014;522(12):2741–55. doi: 10.1002/cne.23580 24610700.

34. Inoki K, Li Y, Zhu T, Wu J, Guan KL. TSC2 is phosphorylated and inhibited by Akt and suppresses mTOR signalling. Nat Cell Biol. 2002;4(9):648–57. doi: 10.1038/ncb839 12172553.

35. Yu T, Fan Y, Xu Y, Xu L, Xu G, Cao F, et al. Standardized Ginkgo biloba extract EGb 761(R) attenuates early brain injury following subarachnoid hemorrhage via suppressing neuronal apoptosis through the activation of Akt signaling. Biomed Pharmacother. 2018;107:329–37. doi: 10.1016/j.biopha.2018.08.012 30098550.

Článek vyšel v časopise


2019 Číslo 12