Exploring functional core bacteria in fermentation of a traditional Chinese food, Aspergillus-type douchi


Autoři: Huilin Yang aff001;  Lin Yang aff001;  Ju Zhang aff001;  Hao Li aff001;  Zongcai Tu aff001;  Xiaolan Wang aff001
Působiště autorů: Key Lab of Protection and Utilization of Subtropic Plant Resources of Jiangxi Province, Jiangxi Normal University, Nanchang, China aff001
Vyšlo v časopise: PLoS ONE 14(12)
Kategorie: Research Article
doi: 10.1371/journal.pone.0226965

Souhrn

Douchi is a type of traditional Chinese flavoring food that has been used for thousands of years and is produced by multispecies solid-state fermentation. However, the correlation between the flavor, the microbiota, and the functional core microbiota in Aspergillus-type douchi fermentation remains unclear. In this study, Illumina MiSeq sequencing and chromatography were used to investigate the bacterial community and flavor components in Aspergillus-type douchi fermentation. The dominant phyla were Firmicutes, Proteobacteria, and Actinobacteria, and the dominant genera were Weissella, Bacillus, Anaerosalibacter, Lactobacillus, Staphylococcus, and Enterococcus. A total of 58 flavor components were detected during fermentation, including two alcohols, 14 esters, five pyrazines, three alkanes, four aldehydes, three phenols, six acids, and five other compounds. Bidirectional orthogonal partial least square modeling showed that Corynebacterium_1, Lactococcus, Atopostipes, Peptostreptococcus, norank_o__AKYG1722, Truepera, Gulosibacter, norank_f__Actinomycetaceae, and unclassified_f__Rhodobacteraceae are the functional core microbiota responsible for the formation of the flavor components during douchi fermentation. This is the first study to investigate the functional core microbiota in douchi fermentation using Illumina MiSeq sequencing and chromatographic techniques. Our findings extend our understanding of the relationships between flavor, the microbiota, and the functional core microbiota during Aspergillus-type douchi fermentation.

Klíčová slova:

Bacillus – Bacteria – Corynebacteria – Esters – Fermentation – Microbiome – Simpson index – Lactococcus


Zdroje

1. Wang Z-M, Lu Z-M, Shi J-S, Xu Z-H. Exploring flavour-producing core microbiota in multispecies solid-state fermentation of traditional Chinese vinegar. Sci Rep-Uk. 2016;6.

2. Yang L, Yang H-l, Tu Z-c, Wang X-l. High-Throughput Sequencing of Microbial Community Diversity and Dynamics during Douchi Fermentation. Plos One. 2016;11(12):e0168166. doi: 10.1371/journal.pone.0168166 27992473

3. Chen C, Xiang JY, Hu W, Xie YB, Wang TJ, Cui JW, et al. Identification of key micro-organisms involved in Douchi fermentation by statistical analysis and their use in an experimental fermentation. Journal of Applied Microbiology. 2015;119(5):1324–34. doi: 10.1111/jam.12917 26251195

4. Park S-E, Yoo S-A, Seo S-H, Lee K-I, Na C-S, Son H-S. GC-MS based metabolomics approach of Kimchi for the understanding of Lactobacillus plantarum fermentation characteristics. Lwt-Food Sci Technol. 2016;68:313–21. doi: 10.1016/j.lwt.2015.12.046

5. Liu SP, Mao J, Liu YY, Meng XY, Ji ZW, Zhou ZL, et al. Bacterial succession and the dynamics of volatile compounds during the fermentation of Chinese rice wine from Shaoxing region. World Journal of Microbiology & Biotechnology. 2015;31(12):1907–21. doi: 10.1007/s11274-015-1931-1 26492888

6. Piao H, Hawley E, Kopf S, DeScenzo R, Sealock S, Henick-Kling T, et al. Insights into the bacterial community and its temporal succession during the fermentation of wine grapes. Front Microbiol. 2015;6.

7. Trygg J, Wold S. Orthogonal projections to latent structures (O-PLS). Journal of chemometrics. 2002;16(3):119–28.

8. Wold S, Trygg J, Berglund A, Antti H. Some recent developments in PLS modeling. Chemometrics and intelligent laboratory systems. 2001;58(2):131–50.

9. Bylesjö M, Eriksson D, Kusano M, Moritz T, Trygg J. Data integration in plant biology: the O2PLS method for combined modeling of transcript and metabolite data. The Plant Journal. 2007;52(6):1181–91. doi: 10.1111/j.1365-313X.2007.03293.x 17931352

10. Lambert JE, Parnell JA, Han J, Sturzenegger T, Paul HA, Vogel HJ, et al. Evaluation of yellow pea fibre supplementation on weight loss and the gut microbiota: a randomized controlled trial. BMC gastroenterology. 2014;14(1):69.

11. Li Y, Liao Q, Lin M, Zhong D, Wei L, Han B, et al. An integrated metabonomics and microbiology analysis of host-microbiota metabolic interactions in rats with Coptis chinensis-induced diarrhea. Rsc Adv. 2015;5(97):79329–41.

12. Dineen S, Aranda Rt, Anders D, Robertson J. An evaluation of commercial DNA extraction kits for the isolation of bacterial spore DNA from soil. Journal of applied microbiology. 2010;109(6):1886–96. doi: 10.1111/j.1365-2672.2010.04816.x 20666869

13. Liu B, Yuan J, Yiu S-M, Li Z, Xie Y, Chen Y, et al. COPE: an accurate k-mer-based pair-end reads connection tool to facilitate genome assembly. Bioinformatics. 2012;28(22):2870–4. doi: 10.1093/bioinformatics/bts563 23044551

14. You J, Wu G, Ren F, Chang Q, Yu B, Xue Y, et al. Microbial community dynamics in Baolige oilfield during MEOR treatment, revealed by Illumina MiSeq sequencing. Appl Microbiol Biot. 2016;100(3):1469–78.

15. Li P, Liang H, Lin W-T, Feng F, Luo L. Microbiota Dynamics Associated with Environmental Conditions and Potential Roles of Cellulolytic Communities in Traditional Chinese Cereal Starter Solid-State Fermentation. Appl Environ Microb. 2015;81(15):5144–56. doi: 10.1128/aem.01325-15 26002897

16. Huang X, Liu L, Wen T, Zhu R, Zhang J, Cai Z. Illumina MiSeq investigations on the changes of microbial community in the Fusarium oxysporum f. sp. cubense infected soil during and after reductive soil disinfestation. Microbiological research. 2015;181:33–42. doi: 10.1016/j.micres.2015.08.004 26640050

17. Tang J, Iliev ID, Brown J, Underhill DM, Funari VA. Mycobiome: Approaches to analysis of intestinal fungi. J Immunol Methods. 2015;421:112–21. doi: 10.1016/j.jim.2015.04.004 25891793

18. Igarashi H, Maeda S, Ohno K, Horigome A, Odamaki T, Tsujimoto H. Effect of oral administration of metronidazole or prednisolone on fecal microbiota in dogs. Plos One. 2014;9(9):e107909. doi: 10.1371/journal.pone.0107909 25229475

19. Marsh AJ, O’Sullivan O, Hill C, Ross RP, Cotter PD. Sequencing-based analysis of the bacterial and fungal composition of kefir grains and milks from multiple sources. Plos One. 2013;8(7):e69371. doi: 10.1371/journal.pone.0069371 23894461

20. Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB, et al. Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microb. 2009;75(23):7537–41.

21. Cooper C, Packer N, Williams K. Amino acid analysis protocols: Springer Science & Business Media; 2001.

22. Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, et al. QIIME allows analysis of high-throughput community sequencing data. Nature methods. 2010;7(5):335. doi: 10.1038/nmeth.f.303 20383131

23. Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB, et al. Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol. 2009;75(23):7537–41. doi: 10.1128/AEM.01541-09 19801464

24. Team RC. R: A language and environment for statistical computing. 2013.

25. Park S-E, Yoo S-A, Seo S-H, Lee K-I, Na C-S, Son H-S. GC–MS based metabolomics approach of Kimchi for the understanding of Lactobacillus plantarum fermentation characteristics. LWT-Food Science and Technology. 2016;68:313–21.

26. STANOJLOVIC OP, ZIVANOVIC DP, SUSIC VT. The effect of delta sleep-inducing peptide on the EEG and power spectra in rat. Indian J Physiol Pharmacal. 2000;44(4).

27. Loizou C, Pattichis C, Seimenis I, Eracleous E, Schizas C, Pantziaris M, editors. Quantitative analysis of brain white matter lesions in multiple sclerosis subjects: Preliminary findings. 2008 International Conference on Information Technology and Applications in Biomedicine; 2008: IEEE.

28. Rencher AC. A review of “Methods of Multivariate Analysis”. Taylor & Francis; 2005.

29. Kim J-H, Kim D-H, Ahn H-J, Park H-J, Byun M-W. Reduction of the biogenic amine contents in low salt-fermented soybean paste by gamma irradiation. Food Control. 2005;16(1):43–9.

30. Chen TT, Wang MJ, Jiang SY, Xiong SQ, Zhu DC, Wei H. Investigation of the microbial changes during koji-making process of Douchi by culture-dependent techniques and PCR-DGGE. International Journal of Food Science and Technology. 2011;46(9):1878–83. doi: 10.1111/j.1365-2621.2011.02696.x

31. Panda MK, Sahu MK, Tayung K. Isolation and characterization of a thermophilic Bacillus sp. with protease activity isolated from hot spring of Tarabalo, Odisha, India. Iranian journal of microbiology. 2013;5(2):159. 23825735

32. Heinen W, Lauwers A, Mulders J. Bacillus flavothermus, a newly isolated facultative thermophile. Antonie van Leeuwenhoek. 1982;48(3):265–72. doi: 10.1007/bf00400386 7125637

33. Seck EH. Etude de la diversité des procaryotes halophiles du tube digestif par approche de culture: Aix-Marseille; 2017.

34. Guerzoni ME, Lanciotti R, Cocconcelli PS. Alteration in cellular fatty acid composition as a response to salt, acid, oxidative and thermal stresses in Lactobacillus helveticus. Microbiology. 2001;147(8):2255–64.

35. Niamsup P, Sujaya IN, Tanaka M, Sone T, Hanada S, Kamagata Y, et al. Lactobacillus thermotolerans sp. nov., a novel thermotolerant species isolated from chicken faeces. International journal of systematic and evolutionary microbiology. 2003;53:263–8. doi: 10.1099/ijs.0.02347-0 12656183

36. Garruti DS, Franco MRB, da Silva MAA, Janzantti NS, Alves GL. Assessment of aroma impact compounds in a cashew apple-based alcoholic beverage by GC-MS and GC-olfactometry. Lwt-Food Sci Technol. 2006;39(4):373–8.

37. McFeeters R. Fermentation microorganisms and flavor changes in fermented foods. Journal of Food Science. 2004;69(1).

38. Ott A, Fay LB, Chaintreau A. Determination and origin of the aroma impact compounds of yogurt flavor. Journal of agricultural and food chemistry. 1997;45(3):850–8.

39. Gao X-L, Cui C, Zhao H-F, Zhao M-M, Yang L, Ren J-Y. Changes in volatile aroma compounds of traditional Chinese-type soy sauce during moromi fermentation and heat treatment. Food Science and Biotechnology. 2010;19(4):889–98.

40. Giri A, Osako K, Okamoto A, Ohshima T. Olfactometric characterization of aroma active compounds in fermented fish paste in comparison with fish sauce, fermented soy paste and sauce products. Food Research International. 2010;43(4):1027–40.

41. Chen QC, Xu YX, Wu P, Xu XY, Pan SY. Aroma impact compounds in Liuyang douchi, a Chinese traditional fermented soya bean product. International journal of food science & technology. 2011;46(9):1823–9.

42. Cretenet M, Le Gall G, Wegmann U, Even S, Shearman C, Stentz R, et al. Early adaptation to oxygen is key to the industrially important traits of Lactococcus lactis ssp. cremoris during milk fermentation. Bmc Genomics. 2014;15(1):1054. doi: 10.1186/1471-2164-15-1054 25467604

43. Cho J, Lee D, Yang C, Jeon J, Kim J, Han H. Microbial population dynamics of kimchi, a fermented cabbage product. FEMS microbiology letters. 2006;257(2):262–7. doi: 10.1111/j.1574-6968.2006.00186.x 16553862

44. Chen T, Wang M, Li S, Wu Q, Wei H. Molecular Identification of Microbial Community in Surface and Undersurface Douchi During Postfermentation. Journal of Food Science. 2014;79(4):M653–M8. doi: 10.1111/1750-3841.12417 24621312

45. Chen T, Wang M, Jiang S, Xiong S, Zhu D, Wei H. Investigation of the microbial changes during koji-making process of Douchi by culture-dependent techniques and PCR-DGGE. International Journal of Food Science and Technology. 2011;46(9):1878–83. doi: 10.1111/j.1365-2621.2011.02696.x

46. Johnson JA, El-Dash AA. Role of nonvolatile compounds in bread flavor. Journal of Agricultural and Food Chemistry. 1969;17(4):740–6.

47. Ye M, Yue T, Yuan Y. Changes in the profile of volatile compounds and amino acids during cider fermentation using dessert variety of apples. Eur Food Res Technol. 2014;239(1):67–77.

48. Chen C, Xiang J, Hu W, Xie Y, Wang T, Cui J, et al. Identification of key micro-organisms involved in Douchi fermentation by statistical analysis and their use in an experimental fermentation. Journal of applied microbiology. 2015;119(5):1324–34. doi: 10.1111/jam.12917 26251195


Článek vyšel v časopise

PLOS One


2019 Číslo 12