Structure and age-dependent growth of the chicken liver together with liver fat quantification: A comparison between a dual-purpose and a broiler chicken line


Autoři: Zaher Alshamy aff001;  Kenneth C. Richardson aff002;  George Harash aff001;  Hana Hünigen aff001;  Ilen Röhe aff003;  Hafez Mohamed Hafez aff004;  Johanna Plendl aff001;  Salah Al Masri aff001
Působiště autorů: Institute of Veterinary Anatomy, Department of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany aff001;  College of Veterinary Medicine, School of Veterinary and Life Sciences, Murdoch University, Murdoch, Australia aff002;  Institute of Animal Nutrition, Department of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany aff003;  Institute of Poultry Diseases, Department of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany aff004
Vyšlo v časopise: PLoS ONE 14(12)
Kategorie: Research Article
doi: 10.1371/journal.pone.0226903

Souhrn

Rearing dual-purpose chickens is a practicable approach to avoid culling one-day-old male layer chicks. The present study examined the impact of a conventional fattening diet on the liver of a novel dual-purpose chicken line (Lohmann Dual, LD) in comparison to a broiler (Ross 308) chicken line. Age-related changes of structure and lipid content of the liver were assessed. One hundred twenty and newly hatched chicks (LD = 66, Ross = 54) were kept under the same husbandry conditions and fed a commercial diet for 5 weeks for Ross and 9 weeks for LD. Six birds of each line were examined weekly. Their body weight (BW) and liver mass were recorded. Microscopic structure and ultrastructure of the liver were investigated and the liver lipid content was measured using a pre-validated method. During the study period, liver mass increased with age, while normalized liver mass decreased. Furthermore, liver mass of Ross birds was greater than that of LD birds of the same BW. Overall, no significant differences were observed in the hepatic structure or ultrastructure between the two chicken lines. The hepatic lymphatic aggregations were without fibrous capsules and their number and area increased throughout the first week, then the values began to fluctuate with age in both chicken lines. The changes in the liver lipid content of the two chicken lines were within the normal physiological range over the term of the study. The liver lipid content correlated negatively with age and body weight in both lines. It was the highest on the first day then decreased until day 7 and thereafter did not change in both chicken lines. However, given the same body weight, the Ross chickens had a 9% greater liver lipid content than LD chickens. It is concluded that there is no apparent adverse effect of a high-energy diet on the liver of LD chickens.

Klíčová slova:

Birds – Body weight – Fats – Hepatocytes – Histology – Chickens – Lipids – Liver


Zdroje

1. Leenstra F, Munnichs G, Beekman V, Van den Heuvel-Vromans E, Aramyan L, Woelders H. Killing day-old chicks? Public opinion regarding potential alternatives. Anim Welf. 2011;20(1):37–45.

2. Damme K, Urselmans S, Schmidt E. Economics of dual-purpose breeds–a comparison of meat and egg production using dual purpose breeds versus conventional broiler and layer strains. Available from: http://www.ltz.de/de-wAssets/docs/lohmann-information/Lohmann-Information2_2015_Vol.-49-2-October-2015_Damme.pdf 2015;49:4–9.

3. Alshamy Z, Richardson KC, Hünigen H, Hafez HM, Plendl J, Al Masri S. Comparison of the gastrointestinal tract of a dual-purpose to a broiler chicken line: A qualitative and quantitative macroscopic and microscopic study. PloS one. 2018;13(10):e0204921. doi: 10.1371/journal.pone.0204921 30339691

4. Richard J. Production and growth related disorders and other metabolic diseases of poultry–a review. Vet J. 2005;169(3):350–69. doi: 10.1016/j.tvjl.2004.04.015 15848778

5. D’Andre HC, Paul W, Shen X, Jia X, Zhang R, Sun L, et al. Identification and characterization of genes that control fat deposition in chickens. J Anim Sci Biotechnol 2013;4(1):43. doi: 10.1186/2049-1891-4-43 24206759

6. Hodges RD. The histology of the fowl: Academic Press.; 1974.

7. Hünigen H, Mainzer K, Hirschberg RM, Custodis P, Gemeinhardt O, Al Masri S, et al. Structure and age-dependent development of the turkey liver: a comparative study of a highly selected meat-type and a wild-type turkey line. Poult Sci. 2016;95(4):901–11. doi: 10.3382/ps/pev358 26908884

8. Leveille GA, Romsos DR, Yeh Y-Y, O’Hea EKJPs. Lipid biosynthesis in the chick. A consideration of site of synthesis, influence of diet and possible regulatory mechanisms. Poult Sci. 1975;54(4):1075–93. doi: 10.3382/ps.0541075 240159

9. Naumann C, Bassler R. Die chemische Untersuchung von Futtermitteln. 3rd ed. Darmstadt: VDLUFA Verlag. 2012.

10. Aescht E, Büchl-Zimmermann S, Burmester A, Dänhardt-Pfeiffer S, Desel C, Hamers C, et al. Präparationsmethoden. Romeis Mikroskopische Technik: Springer. Basel; 2010. p. 39–179.

11. Liguori G, Calamita G, Cascella D, Mastrodonato M, Portincasa P, Ferri D. An innovative methodology for the automated morphometric and quantitative estimation of liver steatosis. Histol Histopathol. 2009;24(1):49. doi: 10.14670/HH-24.49 19012244

12. Lilja C. Postnatal growth and organ development in the goose (Anser anser). Growth. 1981;45(4):329–41. 7338312

13. Scheele C. Pathological changes in metabolism of poultry related to increasing production levels. Vet Q. 1997;19(3):127–30. doi: 10.1080/01652176.1997.9694756 9323854

14. Duke G. Alimentary canal: secretion and digestion, special digestive functions, and absorption. Avian physiology: Springer; 1986. p. 289–302.

15. Grunkemeyer VL. Advanced diagnostic approaches and current management of avian hepatic disorders. Vet Clin North Am Exot Anim Pract. 2010;13(3):413–27. doi: 10.1016/j.cvex.2010.05.005 20682427

16. Havenstein G, Ferket P, Scheideler S, Larson B. Growth, livability, and feed conversion of 1957 vs 1991 broilers when fed “typical” 1957 and 1991 broiler diets. Poult Sci. 1994;73(12):1785–94. doi: 10.3382/ps.0731785 7877934

17. Govaerts T, Room G, Buyse J, Lippens M, De Groote G, Decuypere E. Early and temporary quantitative food restriction of broiler chickens. 2. Effects on allometric growth and growth hormone secretion. Br Poult Sci. 2000;41(3):355–62. doi: 10.1080/713654923 11081431

18. Schmidt C, Persia M, Feierstein E, Kingham B, Saylor W. Comparison of a modern broiler line and a heritage line unselected since the 1950s. Poult Sci. 2009;88(12):2610–9. doi: 10.3382/ps.2009-00055 19903960

19. Purton M. Structure and ultrastructure of the liver in the domestic fowl, Gallus gallus. J. Zool. 1969;159(3):273–82.

20. Nishimura S, Sagara A, Oshima I, Ono Y, Iwamoto H, Okano K, et al. Immunohistochemical and scanning electron microscopic comparison of the collagen network constructions between pig, goat and chicken livers. Animal Sci. J. 2009;80(4):451–9.

21. Oláh I, Nagy N, Vervelde L. Structure of the avian lymphoid system. Avian immunology: Elsevier; 2014. p. 11–44.

22. Cui D, Daley WP, Fratkin JD, Haines DE, Lynch JC, Naftel JP, et al. Atlas of histology: with functional and clinical correlations: Wolters Kluwer/Lippincott Williams & Wilkins; 2011.

23. Younus M, Nisa Q, Munir M, Jamil T, Kaboudi K, Rehman Z, et al. Viral hepatitis in chicken and turkeys. World's Poult Sci J. 2017;73(2):379–94.

24. Lisbôa RS, Teixeira RC, Rangel CP, Santos HA, Massard CL, Fonseca AH. Avian spirochetosis in chickens following experimental transmission of Borrelia anserina by Argas (Persicargas) miniatus. Avian dis. 2009;53(2):166–8. doi: 10.1637/8377-061508-Reg.1 19630219

25. Bhatnagar M, Singh A. Ultrastructure of turkey hepatocytes. Anat Rec. 1982;202(4):473–82. doi: 10.1002/ar.1092020406 7072989

26. OHATA M, TANUMA Y, ITO T. Electron microscopic study on avian livers with special remarks on the fine structure of sinusoidal cells. Arch Histol Jpn. 1982;58(4–6):325–67.

27. Ghoddusi M, Kelly WR. Ultrastructure of in situ perfusion‐fixed avian liver, with special reference to structure of the sinusoids. Microsc Res Tech. 2004;65(1‐2):101–11. doi: 10.1002/jemt.20107 15570590

28. Kawanami O. Electron microscopic study of mammalian liver with periodic acid methenamine silver stain—Basement membrane structure and fibrogenesis in space of Disse. Acta Pathol Jpn. 1973;23(4):717–38. doi: 10.1111/j.1440-1827.1973.tb02771.x 4131636

29. TANUMA Y, ITO T. Electron microscope study on the hepatic sinusoidal wall and fat-storing cells in the bat. Arch Histol Jpn. 1978;41(1):1–39. doi: 10.1679/aohc1950.41.1 736751

30. Brunt EM, Janney CG, Di Bisceglie AM, Neuschwander-Tetri BA, Bacon BR. Nonalcoholic steatohepatitis: a proposal for grading and staging the histological lesions. Am J Gastroenterol. 1999;94(9):2467. doi: 10.1111/j.1572-0241.1999.01377.x 10484010

31. Franzén LE, Ekstedt M, Kechagias S, Bodin L. Semiquantitative evaluation overestimates the degree of steatosis in liver biopsies: a comparison to stereological point counting. Mod Pathol. 2005;18(7):912. doi: 10.1038/modpathol.3800370 15920560

32. Cruz-Orive LM, Weibel ER. Sampling designs for stereology. J. Microsc. 1981;122(Pt 3):235–57. doi: 10.1111/j.1365-2818.1981.tb01265.x 7017151

33. Gerspach C, Imhasly S, Klingler R, Hilbe M, Hartnack S, Ruetten M. Variation in fat content between liver lobes and comparison with histopathological scores in dairy cows with fatty liver. BMC Vet. Res. 2017;13(1):98. Epub 2017/04/14. doi: 10.1186/s12917-017-1004-9 28403840; PubMed Central PMCID: PMC5389092.

34. Mutayoba S, Mutayoba B, Noble R. Broiler Chick Body Weight and Lipid Compositional Changes of the Yolk Sac and Liver as Influenced by Dietary Fat Sources. Int. J. Poult. Sci. 2013;12(9):545.

35. Noble R, Cocchi M. Lipid metabolism and the neonatal chicken. Prog Lipid Res. 1990;29(2):107–40. doi: 10.1016/0163-7827(90)90014-c 2093896

36. Entenman C, Lorenz F, Chaikoff I. The lipid content of blood, liver, and yolk sac of the newly hatched chick and the changes that occur in these tissues during the first month of life. J. Biol. Chem. 1940;133:231–41.

37. Takahashi K, Jensen LJPs. Liver response to diet and estrogen in White Leghorn and Rhode Island Red chickens. Poult Sci. 1985;64(5):955–62. doi: 10.3382/ps.0640955 4039822

38. Tůmová E, Teimouri AJSAB. Fat deposition in the broiler chicken: a review. Sci agric bohem. 2010;41(2):121–8.

39. Zerehdaran S, Vereijken AJ, Van Arendonk J, Van der Waaijt E. Estimation of genetic parameters for fat deposition and carcass traits in broilers. Poult Sci. 2004;83(4):521–5. doi: 10.1093/ps/83.4.521 15109049


Článek vyšel v časopise

PLOS One


2019 Číslo 12