Endocrine profile of the VCD-induced perimenopausal model rat

Autoři: Ruither O. G. Carolino aff001;  Paulo T. Barros aff002;  Bruna Kalil aff003;  Janete Anselmo-Franci aff001
Působiště autorů: Department of Basic and Oral Biology, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil aff001;  Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil aff002;  Department of Physiology, Institute of Biomedical Science, Federal University of Alfenas, Alfenas, MG, Brazil aff003
Vyšlo v časopise: PLoS ONE 14(12)
Kategorie: Research Article
doi: https://doi.org/10.1371/journal.pone.0226874


During the transition to menopause, women experience a variety of physical and psychological symptoms that are directly or indirectly linked to changes in hormone secretion. Establishing animal models with intact ovaries is essential for understanding these interactions and finding new therapeutic targets. In this study, we assessed the endocrine profile, as well as the estrous cycle, in the 4-vinylcyclohexene diepoxide (VCD)-induced follicular depletion rat model in 10-day intervals over 1 month to accurately establish the best period for studies of the transition period. Twenty-eight-day-old female rats were injected daily with VCD or oil s.c. for 15 days and euthanized in the diestrus phase approximately 70, 80, 90 and 100 days after the onset of treatment. The percentage of rats showing irregular cycles and the plasma level of FSH increased only in the 100-day VCD group. Plasma anti-Müllerian hormone (AMH) and progesterone were lower in all VCD groups compared to control groups, while estradiol remained unchanged or higher. As in control groups, dihydrotestosterone (DHT) progressively decreased in the 70-90-day VCD groups; however, it was followed by a sharp increase only in the 100-day VCD group. No changes were found in plasma corticosterone, prolactin, thyroid hormones or luteinizing hormone. Based on the estrous cycle and endocrine profile, we conclude that 1) the time window from 70 to 100 days is suitable to study a perimenopause-like state in this model, and 2) regular cycles with low progesterone and AMH and normal FSH can be used as markers of the early/mid-transition period, whereas irregular cycles associated with higher FSH and DHT can be used as markers of the late transition period to estropause.

Klíčová slova:

Blood plasma – estradiol – Progesterone – Secretion – Testosterone – Estrous cycle – Prolactin


1. WHO Scientific Group. Research on the menopuase in the 1990s: Report of the WHO Scientific Group. Geneva: World Health Organization; 1996. 1–79 p.

2. Santoro N, Randolph JF Jr. Reproductive hormones and the menopause transition. Obstet Gynecol Clin North Am. 2011;38(3):455–66. doi: 10.1016/j.ogc.2011.05.004 21961713; PubMed Central PMCID: PMC3197715.

3. Van Voorhis BJ, Santoro N, Harlow S, Crawford SL, Randolph J. The relationship of bleeding patterns to daily reproductive hormones in women approaching menopause. Obstet Gynecol. 2008;112(1):101–8. doi: 10.1097/AOG.0b013e31817d452b 18591314; PubMed Central PMCID: PMC2666050.

4. Toffol E, Kalleinen N, Haukka J, Vakkuri O, Partonen T, Polo-Kantola P. Melatonin in perimenopausal and postmenopausal women: associations with mood, sleep, climacteric symptoms, and quality of life. Menopause. 2014;21(5):493–500. doi: 10.1097/GME.0b013e3182a6c8f3 24065140.

5. Chakraborty TR, Gore AC. Aging-related changes in ovarian hormones, their receptors, and neuroendocrine function. Exp Biol Med (Maywood). 2004;229(10):977–87. Epub 2004/11/04. doi: 10.1177/153537020422901001 15522833.

6. LeFevre J, McClintock MK. Reproductive senescence in female rats: a longitudinal study of individual differences in estrous cycles and behavior. Biol Reprod. 1988;38(4):780–9. Epub 1988/05/01. doi: 10.1095/biolreprod38.4.780 3401536.

7. Hale GE, Burger HG. Hormonal changes and biomarkers in late reproductive age, menopausal transition and menopause. Best Pract Res Clin Obstet Gynaecol. 2009;23(1):7–23. Epub 2008/12/03. doi: 10.1016/j.bpobgyn.2008.10.001 19046657.

8. Meites J, Steger RW, Huang HH. Relation of neuroendocrine system to the reproductive decline in aging rats and human subjects. Fed Proc. 1980;39(14):3168–72. Epub 1980/12/01. 7002619.

9. Sone K, Yamamoto-Sawamura T, Kuwahara S, Nishijima K, Ohno T, Aoyama H, et al. Changes of estrous cycles with aging in female F344/n rats. Exp Anim. 2007;56(2):139–48. Epub 2007/04/27. doi: 10.1538/expanim.56.139 17460359.

10. Gore AC, Oung T, Yung S, Flagg RA, Woller MJ. Neuroendocrine mechanisms for reproductive senescence in the female rat: gonadotropin-releasing hormone neurons. Endocrine. 2000;13(3):315–23. doi: 10.1385/ENDO:13:3:315 11216643.

11. Huang HH, Steger RW, Bruni JF, Meites J. Patterns of sex steroid and gonadotropin secretion in aging female rats. Endocrinology. 1978;103(5):1855–9. doi: 10.1210/endo-103-5-1855 570913.

12. Kappeler CJ, Hoyer PB. 4-vinylcyclohexene diepoxide: a model chemical for ovotoxicity. Syst Biol Reprod Med. 2012;58(1):57–62. doi: 10.3109/19396368.2011.648820 22239082; PubMed Central PMCID: PMC3307534.

13. Hoyer PB, Sipes IG. Development of an animal model for ovotoxicity using 4-vinylcyclohexene: a case study. Birth Defects Res B Dev Reprod Toxicol. 2007;80(2):113–25. Epub 2007/03/08. doi: 10.1002/bdrb.20103 17342769.

14. Mayer LP, Devine PJ, Dyer CA, Hoyer PB. The follicle-deplete mouse ovary produces androgen. Biol Reprod. 2004;71(1):130–8. doi: 10.1095/biolreprod.103.016113 14998904.

15. Lohff JC, Christian PJ, Marion SL, Arrandale A, Hoyer PB. Characterization of cyclicity and hormonal profile with impending ovarian failure in a novel chemical-induced mouse model of perimenopause. Comp Med. 2005;55(6):523–7. 16422148.

16. Lohff JC, Christian PJ, Marion SL, Hoyer PB. Effect of duration of dosing on onset of ovarian failure in a chemical-induced mouse model of perimenopause. Menopause. 2006;13(3):482–8. doi: 10.1097/01.gme.0000191883.59799.2e 16735946.

17. Rivera Z, Christian PJ, Marion SL, Brooks HL, Hoyer PB. Steroidogenic capacity of residual ovarian tissue in 4-vinylcyclohexene diepoxide-treated mice. Biol Reprod. 2009;80(2):328–36. doi: 10.1095/biolreprod.108.070359 18829706; PubMed Central PMCID: PMC2710885.

18. Reinwald S, Mayer LP, Hoyer PB, Turner CH, Barnes S, Weaver CM. A longitudinal study of the effect of genistein on bone in two different murine models of diminished estrogen-producing capacity. J Osteoporos. 2010;2010:1–14. doi: 10.4061/2010/145170 20948578; PubMed Central PMCID: PMC2951124.

19. Brooks HL, Pollow DP, Hoyer PB. The VCD mouse model of menopause and perimenopause for the study of sex differences in cardiovascular disease and the metabolic syndrome. Physiology (Bethesda). 2016;31(4):250–7. doi: 10.1152/physiol.00057.2014 27252160; PubMed Central PMCID: PMC5504385.

20. Thompson KE, Bourguet SM, Christian PJ, Benedict JC, Sipes IG, Flaws JA, et al. Differences between rats and mice in the involvement of the aryl hydrocarbon receptor in 4-vinylcyclohexene diepoxide-induced ovarian follicle loss. Toxicol Appl Pharmacol. 2005;203(2):114–23. doi: 10.1016/j.taap.2004.07.010 15710172.

21. Kao SW, Sipes IG, Hoyer PB. Early effects of ovotoxicity induced by 4-vinylcyclohexene diepoxide in rats and mice. Reprod Toxicol. 1999;13(1):67–75. doi: 10.1016/s0890-6238(98)00061-6 10080302.

22. Mayer LP, Pearsall NA, Christian PJ, Devine PJ, Payne CM, McCuskey MK, et al. Long-term effects of ovarian follicular depletion in rats by 4-vinylcyclohexene diepoxide. Reprod Toxicol. 2002;16(6):775–81. doi: 10.1016/s0890-6238(02)00048-5 12401505.

23. Battiston FG, Dos Santos C, Barbosa AM, Sehnem S, Leonel ECR, Taboga SR, et al. Glucose homeostasis in rats treated with 4-vinylcyclohexene diepoxide is not worsened by dexamethasone treatment. J Steroid Biochem Mol Biol. 2017;165(Pt B):170–81. doi: 10.1016/j.jsbmb.2016.06.001 27264932.

24. Reis FM, Pestana-Oliveira N, Leite CM, Lima FB, Brandao ML, Graeff FG, et al. Hormonal changes and increased anxiety-like behavior in a perimenopause-animal model induced by 4-vinylcyclohexene diepoxide (VCD) in female rats. Psychoneuroendocrinology. 2014;49:130–40. doi: 10.1016/j.psyneuen.2014.06.019 25080405.

25. Pestana-Oliveira N, Kalil B, Leite CM, Carolino ROG, Debarba LK, Elias LLK, et al. Effects of estrogen therapy on the serotonergic system in an animal model of perimenopause induced by 4-vinylcyclohexen diepoxide (VCD). eNeuro. 2018;5(1). doi: 10.1523/ENEURO.0247-17.2017 29362726; PubMed Central PMCID: PMC5777542.

26. Frye JB, Lukefahr AL, Wright LE, Marion SL, Hoyer PB, Funk JL. Modeling perimenopause in Sprague-Dawley rats by chemical manipulation of the transition to ovarian failure. Comp Med. 2012;62(3):193–202. 22776052; PubMed Central PMCID: PMC3364707.

27. Lukefahr AL, Frye JB, Wright LE, Marion SL, Hoyer PB, Funk JL. Decreased bone mineral density in rats rendered follicle-deplete by an ovotoxic chemical correlates with changes in follicle-stimulating hormone and inhibin A. Calcif Tissue Int. 2012;90(3):239–49. doi: 10.1007/s00223-011-9565-2 22249524; PubMed Central PMCID: PMC3288225.

28. Burger HG, Dudley EC, Hopper JL, Shelley JM, Green A, Smith A, et al. The endocrinology of the menopausal transition: a cross-sectional study of a population-based sample. J Clin Endocrinol Metab. 1995;80(12):3537–45. doi: 10.1210/jcem.80.12.8530596 8530596.

29. Burger HG, Cahir N, Robertson DM, Groome NP, Dudley E, Green A, et al. Serum inhibins A and B fall differentially as FSH rises in perimenopausal women. Clin Endocrinol (Oxf). 1998;48(6):809–13. doi: 10.1046/j.1365-2265.1998.00482.x 9713572.

30. Santoro N, Brown JR, Adel T, Skurnick JH. Characterization of reproductive hormonal dynamics in the perimenopause. J Clin Endocrinol Metab. 1996;81(4):1495–501. doi: 10.1210/jcem.81.4.8636357 8636357.

31. Muhammad FS, Goode AK, Kock ND, Arifin EA, Cline JM, Adams MR, et al. Effects of 4-vinylcyclohexene diepoxide on peripubertal and adult Sprague-Dawley rats: ovarian, clinical, and pathologic outcomes. Comp Med. 2009;59(1):46–59. Epub 2009/03/20. 19295054; PubMed Central PMCID: PMC2703138.

32. Pestana-Oliveira N, Kalil B, Leite CM, Carolino ROG, Debarba LK, Elias LLK, et al. Effects of estrogen therapy on the serotonergic system in an animal model of perimenopause induced by 4-vinylcyclohexen diepoxide (VCD). eNeuro. 2018;5. doi: 10.1523/ENEURO.0247-17.2017 29362726

33. Organisation for the Economic Co-operation and Development (OECD). (n.d.). Part 5: Preparation, reading and reporting of vaginal smears. Accessed June 24, 2016. http://www.oecd.org/chemicalsafety/testing/40581357.pdf.

34. Kaneko S, Sato N, Sato K, Hashimoto I. Changes in plasma progesterone, estradiol, follicle-stimulating hormone and luteinizing hormone during diestrus and ovulation in rats with 5-day estrous cycles: effect of antibody against progesterone. Biol Reprod. 1986;34(3):488–94. Epub 1986/04/01. doi: 10.1095/biolreprod34.3.488 3083880.

35. Haim S, Shakhar G, Rossene E, Taylor AN, Ben-Eliyahu S. Serum levels of sex hormones and corticosterone throughout 4- and 5-day estrous cycles in Fischer 344 rats and their simulation in ovariectomized females. J Endocrinol Invest. 2003;26(10):1013–22. Epub 2004/02/05. doi: 10.1007/BF03348201 14759076.

36. Nequin LG, Alvarez J, Schwartz NB. Measurement of serum steroid and gonadotropin levels and uterine and ovarian variables throughout 4 day and 5 day estrous cycles in the rat. Biol Reprod. 1979;20(3):659–70. Epub 1979/04/01. doi: 10.1095/biolreprod20.3.659 572241.

37. Kalil B, Leite CM, Carvalho-Lima M, Anselmo-Franci JA. Role of sex steroids in progesterone and corticosterone response to acute restraint stress in rats: sex differences. Stress. 2013;16(4):452–60. doi: 10.3109/10253890.2013.777832 23425221.

38. Sherman BM, Korenman SG. Hormonal characteristics of the human menstrual cycle throughout reproductive life. J Clin Invest. 1975;55(4):699–706. doi: 10.1172/JCI107979 1120778; PubMed Central PMCID: PMC301805.

39. Lenton EA, Sexton L, Lee S, Cooke ID. Progressive changes in LH and FSH and LH: FSH ratio in women throughout reproductive life. Maturitas. 1988;10(1):35–43. doi: 10.1016/0378-5122(88)90129-6 3135465.

40. Robertson DM, Hale GE, Fraser IS, Hughes CL, Burger HG. A proposed classification system for menstrual cycles in the menopause transition based on changes in serum hormone profiles. Menopause. 2008;15(6):1139–44. doi: 10.1097/gme.0b013e3181735687 18779761.

41. Finch CE, Felicio LS, Mobbs CV, Nelson JF. Ovarian and steroidal influences on neuroendocrine aging processes in female rodents. Endocr Rev. 1984;5(4):467–97. Epub 1984/01/01. doi: 10.1210/edrv-5-4-467 6389107.

42. Cui L, Qin Y, Gao X, Lu J, Geng L, Ding L, et al. Antimullerian hormone: correlation with age and androgenic and metabolic factors in women from birth to postmenopause. Fertil Steril. 2016;105(2):481–5 e1. doi: 10.1016/j.fertnstert.2015.10.017 26549157.

43. Sahambi SK, Visser JA, Themmen AP, Mayer LP, Devine PJ. Correlation of serum anti-Mullerian hormone with accelerated follicle loss following 4-vinylcyclohexene diepoxide-induced follicle loss in mice. Reprod Toxicol. 2008;26(2):116–22. Epub 2008/08/19. doi: 10.1016/j.reprotox.2008.07.005 18706995.

44. Yeh J, Kim B, Peresie J, Liang YJ, Arroyo A. Serum and ovarian Mullerian inhibiting substance, and their decline in reproductive aging. Fertil Steril. 2007;87(5):1227–30. doi: 10.1016/j.fertnstert.2006.11.011 17222835.

45. Reyes FI, Winter JS, Faiman C. Pituitary-ovarian relationships preceding the menopause. I. A cross-sectional study of serum follice-stimulating hormone, luteinizing hormone, prolactin, estradiol, and progesterone levels. Am J Obstet Gynecol. 1977;129(5):557–64. 910845.

46. MacNaughton J, Banah M, McCloud P, Hee J, Burger H. Age related changes in follicle stimulating hormone, luteinizing hormone, oestradiol and immunoreactive inhibin in women of reproductive age. Clin Endocrinol (Oxf). 1992;36(4):339–45. doi: 10.1111/j.1365-2265.1992.tb01457.x 1424166.

47. Shideler SE, DeVane GW, Kalra PS, Benirschke K, Lasley BL. Ovarian-pituitary hormone interactions during the perimenopause. Maturitas. 1989;11(4):331–9. doi: 10.1016/0378-5122(89)90029-7 2515421.

48. Appt SE, Clarkson TB, Hoyer PB, Kock ND, Goode AK, May MC, et al. Experimental induction of reduced ovarian reserve in a nonhuman primate model (Macaca fascicularis). Comp Med. 2010;60(5):380–8. 21262124; PubMed Central PMCID: PMC2958207.

49. Peluso JJ, Steger RW. Role of FSH in regulating granulosa cell division and follicular atresia in rats. J Reprod Fertil. 1978;54(2):275–8. Epub 1978/11/01. doi: 10.1530/jrf.0.0540275 722676.

50. Abe T, Yamaya Y, Wada Y, Suzuki M. Pituitary—ovarian relationships in women approaching the menopause. Maturitas. 1983;5(1):31–7. doi: 10.1016/0378-5122(83)90019-1 6410157

51. Lovick TA, Guapo VG, Anselmo-Franci JA, Loureiro CM, Faleiros MCM, Del Ben CM, et al. A specific profile of luteal phase progesterone is associated with the development of premenstrual symptoms. Psychoneuroendocrinology. 2017;75:83–90. doi: 10.1016/j.psyneuen.2016.10.024 27810707.

52. Ballinger CB, Browning MC, Smith AH. Hormone profiles and psychological symptoms in peri-menopausal women. Maturitas. 1987;9(3):235–51. doi: 10.1016/0378-5122(87)90006-5 3431475.

53. Prior JC, Hitchcock CL. The endocrinology of perimenopause: need for a paradigm shift. Front Biosci (Schol Ed). 2011;3:474–86. doi: 10.2741/s166 21196391.

54. Harlow SD, Gass M, Hall JE, Lobo R, Maki P, Rebar RW, et al. Executive summary of the Stages of Reproductive Aging Workshop +10: addressing the unfinished agenda of staging reproductive aging. Climacteric. 2012;15(2):105–14. doi: 10.3109/13697137.2011.650656 22338612; PubMed Central PMCID: PMC3580996.

55. Lee SJ, Lenton EA, Sexton L, Cooke ID. The effect of age on the cyclical patterns of plasma LH, FSH, oestradiol and progesterone in women with regular menstrual cycles. Hum Reprod. 1988;3(7):851–5. doi: 10.1093/oxfordjournals.humrep.a136796 3141454.

56. Landgren BM, Collins A, Csemiczky G, Burger HG, Baksheev L, Robertson DM. Menopause transition: annual changes in serum hormonal patterns over the menstrual cycle in women during a nine-year period prior to menopause. J Clin Endocrinol Metab. 2004;89(6):2763–9. doi: 10.1210/jc.2003-030824 15181055.

57. Klein NA, Houmard BS, Hansen KR, Woodruff TK, Sluss PM, Bremner WJ, et al. Age-related analysis of inhibin A, inhibin B, and activin a relative to the intercycle monotropic follicle-stimulating hormone rise in normal ovulatory women. J Clin Endocrinol Metab. 2004;89(6):2977–81. doi: 10.1210/jc.2003-031515 15181087.

58. Crawford S, Santoro N, Laughlin GA, Sowers MF, McConnell D, Sutton-Tyrrell K, et al. Circulating dehydroepiandrosterone sulfate concentrations during the menopausal transition. J Clin Endocrinol Metab. 2009;94(8):2945–51. doi: 10.1210/jc.2009-0386 19470626; PubMed Central PMCID: PMC2730879.

59. Ala-Fossi SL, Maenpaa J, Aine R, Punnonen R. Ovarian testosterone secretion during perimenopause. Maturitas. 1998;29(3):239–45. doi: 10.1016/s0378-5122(98)00034-6 9699195.

60. Zumoff B, Strain GW, Miller LK, Rosner W. Twenty-four-hour mean plasma testosterone concentration declines with age in normal premenopausal women. J Clin Endocrinol Metab. 1995;80(4):1429–30. doi: 10.1210/jcem.80.4.7714119 7714119.

61. Davison SL, Bell R, Donath S, Montalto JG, Davis SR. Androgen levels in adult females: changes with age, menopause, and oophorectomy. J Clin Endocrinol Metab. 2005;90(7):3847–53. doi: 10.1210/jc.2005-0212 15827095.

62. Judd HL, Fournet N. Changes of ovarian hormonal function with aging. Exp Gerontol. 1994;29(3–4):285–98. doi: 10.1016/0531-5565(94)90008-6 7925749.

63. Overlie I, Moen MH, Morkrid L, Skjaeraasen JS, Holte A. The endocrine transition around menopause—a five years prospective study with profiles of gonadotropines, estrogens, androgens and SHBG among healthy women. Acta Obstet Gynecol Scand. 1999;78(7):642–7. 10422913.

64. Overlie I, Moen MH, Morkrid L, Skjaeraasen JS, Holte A. The endocrine transition around menopause—a five years prospective study with profiles of gonadotropines, estrogens, androgens and SHBG among healthy women. Acta Obstet Gynecol Scand. 1999;78:642–7. 10422913.

65. Burger HG, Hale GE, Dennerstein L, Robertson DM. Cycle and hormone changes during perimenopause. Menopause. 2008;15:603–12. doi: 10.1097/gme.0b013e318174ea4d 18574431.

66. Moon YS, Duleba AJ, Takahashi H. Differential actions of FSH and androgens on progesterone catabolism by rat granulosa cells. Biochem Biophys Res Commun. 1984;119(2):694–9. doi: 10.1016/s0006-291x(84)80306-x 6424669.

67. Pratis K, O'Donnell L, Ooi GT, Stanton PG, McLachlan RI, Robertson DM. Differential regulation of rat testicular 5alpha-reductase type 1 and 2 isoforms by testosterone and FSH. J Endocrinol. 2003;176(3):393–403. doi: 10.1677/joe.0.1760393 12630924.

68. Farookhi R. Effects of androgen on induction of gonadotropin receptors and gonadotropin-stimulated adenosine 3',5'-monophosphate production in rat ovarian granulosa cells. Endocrinology. 1980;106(4):1216–23. doi: 10.1210/endo-106-4-1216 6244147.

69. Woods NF, Carr MC, Tao EY, Taylor HJ, Mitchell ES. Increased urinary cortisol levels during the menopausal transition. Menopause. 2006;13(2):212–21. Epub 2006/04/29. doi: 10.1097/01.gme.0000198490.57242.2e 16645535.

70. Meldrum DR, Defazio JD, Erlik Y, Lu JK, Wolfsen AF, Carlson HE, et al. Pituitary hormones during the menopausal hot flash. Obstet Gynecol. 1984;64(6):752–6. 6095154.

71. Lo MJ, Kau MM, Wang PS. Effect of aging on corticosterone secretion in diestrous rats. J Cell Biochem. 2006;97(2):351–8. doi: 10.1002/jcb.20576 16187308.

72. Wise PM. Estradiol-induced daily luteinizing hormone and prolactin surges in young and middle-aged rats: correlations with age-related changes in pituitary responsiveness and catecholamine turnover rates in microdissected brain areas. Endocrinology. 1984;115(2):801–9. doi: 10.1210/endo-115-2-801 6378599.

73. Tanner MJ, Hadlow NC, Wardrop R. Variation of female prolactin levels with menopausal status and phase of menstrual cycle. Aust N Z J Obstet Gynaecol. 2011;51:321–4. doi: 10.1111/j.1479-828X.2011.01321.x 21806583.

74. Arafah BM. Increased need for thyroxine in women with hypothyroidism during estrogen therapy. N Engl J Med. 2001;344(23):1743–9. Epub 2001/06/09. doi: 10.1056/NEJM200106073442302 11396440.

75. Silva JF, Ocarino NM, Serakides R. Thyroid hormones and female reproduction. Biol Reprod. 2018. Epub 2018/05/17. doi: 10.1093/biolre/ioy115 29767691.

76. Krassas GE. Thyroid disease and female reproduction. Fertil Steril. 2000;74(6):1063–70. doi: 10.1016/s0015-0282(00)01589-2 11119728.

77. Canaris GJ, Manowitz NR, Mayor G, Ridgway EC. The Colorado thyroid disease prevalence study. Arch Intern Med. 2000;160(4):526–34. Epub 2000/03/01. doi: 10.1001/archinte.160.4.526 10695693.

78. Sowers M, Luborsky J, Perdue C, Araujo KL, Goldman MB, Harlow SD, et al. Thyroid stimulating hormone (TSH) concentrations and menopausal status in women at the mid-life: SWAN. Clin Endocrinol (Oxf). 2003;58(3):340–7. doi: 10.1046/j.1365-2265.2003.01718.x 12608940.

79. Rojas LV, Nieves K, Suarez E, Ortiz AP, Rivera A, Romaguera J. Thyroid-stimulating hormone and follicle-stimulating hormone status in Hispanic women during the menopause transition. Ethn Dis. 2008;18(2 Suppl 2):S2–230-4. 18646355.

Článek vyšel v časopise


2019 Číslo 12
Nejčtenější tento týden