C5aR agonist enhances phagocytosis of fibrillar and non-fibrillar Aβ amyloid and preserves memory in a mouse model of familial Alzheimer’s disease

Autoři: Elena Panayiotou aff001;  Eleni Fella aff002;  Savanna Andreou aff002;  Revekka Papacharalambous aff001;  Petroula Gerasimou aff003;  Paul Costeas aff003;  Stella Angeli aff002;  Ioanna Kousiappa aff004;  Savvas Papacostas aff002;  Theodoros Kyriakides aff001
Působiště autorů: Neurology Clinic A, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus aff001;  Cyprus School of Molecular Medicine, Nicosia, Cyprus aff002;  Karaiskakio Foundation, Nicosia, Cyprus aff003;  Neurology Clinic B, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus aff004
Vyšlo v časopise: PLoS ONE 14(12)
Kategorie: Research Article
doi: https://doi.org/10.1371/journal.pone.0225417


According to the amyloid hypothesis of Alzheimer’s disease (AD) the deposition of prefibrillar and fibrillar Aβ peptide sets off the pathogenic cascades of neuroinflammation and neurodegeneration that lead to synaptic and neuronal loss resulting in cognitive decline. Various approaches to reduce amyloid load by reducing production of the Aβ peptide or enhancing amyloid clearance by primary or secondary immunization have not proven successful in clinical trials. Interfering with the normal function of secretases and suboptimal timing of Aβ peptide removal have been put forward as possible explanations. Complement, an innate component of the immune system, has been found to modulate disease pathology and in particular neuronal loss in the AD mouse model but its mechanism of action is complex. C1Q has been shown to facilitate phagocytosis of Aβ peptide but its Ablation attenuates neuroinflammation. Experiments in AD mouse models show that inhibition of complement component C5a reduces amyloid deposition and alleviates neuroinflammation. Phagocytes including microglia, monocytes and neutrophils carry C5a receptors. Here, a widely used mouse model of AD, 5XFAD, was intermittently treated with the oral C5a receptor agonist EP67 and several neuronal and neuroinflammatory markers as well as memory function were assessed. EP67 treatment enhanced phagocytosis, resulting in a significant reduction of both fibrillar and non-fibrillar Aβ, reduced astrocytosis and preserved synaptic and neuronal markers as well as memory function. Timely and phasic recruitment of the innate immune system offers a new therapeutic avenue of treating pre-symptomatic Alzheimer disease.

Klíčová slova:

Alzheimer's disease – Immunoblotting – Immunohistochemistry techniques – Microglial cells – Mouse models – Neutrophils – Phagocytes – Phagocytosis


1. Alzheimer’s A. 2016 Alzheimer’s disease facts and figures. Alzheimer’s & dementia: the journal of the Alzheimer’s Association. 2016;12(4):459–509. Epub 2016/08/30. doi: 10.1016/j.jalz.2016.03.001 27570871.

2. Reitz C. Alzheimer’s disease and the amyloid cascade hypothesis: a critical review. International journal of Alzheimer’s disease. 2012;2012:369808. Epub 2012/04/17. doi: 10.1155/2012/369808 22506132.

3. Bornemann KD, Wiederhold KH, Pauli C, Ermini F, Stalder M, Schnell L, et al. Abeta-induced inflammatory processes in microglia cells of APP23 transgenic mice. The American journal of pathology. 2001;158(1):63–73. Epub 2001/01/06. doi: 10.1016/s0002-9440(10)63945-4 11141480.

4. White JA, Manelli AM, Holmberg KH, Van Eldik LJ, Ladu MJ. Differential effects of oligomeric and fibrillar amyloid-beta 1–42 on astrocyte-mediated inflammation. Neurobiology of disease. 2005;18(3):459–65. Epub 2005/03/10. doi: 10.1016/j.nbd.2004.12.013 15755672.

5. Mildner A, Schmidt H, Nitsche M, Merkler D, Hanisch UK, Mack M, et al. Microglia in the adult brain arise from Ly-6ChiCCR2+ monocytes only under defined host conditions. Nature neuroscience. 2007;10(12):1544–53. Epub 2007/11/21. doi: 10.1038/nn2015 18026096.

6. Wohleb ES, Powell ND, Godbout JP, Sheridan JF. Stress-induced recruitment of bone marrow-derived monocytes to the brain promotes anxiety-like behavior. The Journal of neuroscience: the official journal of the Society for Neuroscience. 2013;33(34):13820–33. Epub 2013/08/24. doi: 10.1523/jneurosci.1671-13.2013 23966702.

7. Shaftel SS, Kyrkanides S, Olschowka JA, Miller JN, Johnson RE, O’Banion MK. Sustained hippocampal IL-1 beta overexpression mediates chronic neuroinflammation and ameliorates Alzheimer plaque pathology. The Journal of clinical investigation. 2007;117(6):1595–604. Epub 2007/06/06. doi: 10.1172/JCI31450 17549256.

8. Simard AR, Soulet D, Gowing G, Julien JP, Rivest S. Bone marrow-derived microglia play a critical role in restricting senile plaque formation in Alzheimer’s disease. Neuron. 2006;49(4):489–502. Epub 2006/02/16. doi: 10.1016/j.neuron.2006.01.022 16476660.

9. Lian H, Litvinchuk A, Chiang AC, Aithmitti N, Jankowsky JL, Zheng H. Astrocyte-Microglia Cross Talk through Complement Activation Modulates Amyloid Pathology in Mouse Models of Alzheimer’s Disease. The Journal of neuroscience: the official journal of the Society for Neuroscience. 2016;36(2):577–89. Epub 2016/01/14. doi: 10.1523/JNEUROSCI.2117-15.2016 26758846.

10. Doens D, Fernández PL. Microglia receptors and their implications in the response to amyloid β for Alzheimer’s disease pathogenesis. Journal of neuroinflammation. 2014;11:48-. doi: 10.1186/1742-2094-11-48 24625061

11. Hawlisch H, Wills-Karp M, Karp CL, Kohl J. The anaphylatoxins bridge innate and adaptive immune responses in allergic asthma. Molecular immunology. 2004;41(2–3):123–31. Epub 2004/05/26. doi: 10.1016/j.molimm.2004.03.019 15159057.

12. Cavaco CK, Patras KA, Zlamal JE, Thoman ML, Morgan EL, Sanderson SD, et al. A novel C5a-derived immunobiotic peptide reduces Streptococcus agalactiae colonization through targeted bacterial killing. Antimicrobial agents and chemotherapy. 2013;57(11):5492–9. Epub 2013/08/28. doi: 10.1128/AAC.01590-13 23979760.

13. Landlinger C, Oberleitner L, Gruber P, Noiges B, Yatsyk K, Santic R, et al. Active immunization against complement factor C5a: a new therapeutic approach for Alzheimer’s disease. Journal of neuroinflammation. 2015;12:150. Epub 2015/08/16. doi: 10.1186/s12974-015-0369-6 26275910.

14. Oakley H, Cole SL, Logan S, Maus E, Shao P, Craft J, et al. Intraneuronal beta-amyloid aggregates, neurodegeneration, and neuron loss in transgenic mice with five familial Alzheimer’s disease mutations: potential factors in amyloid plaque formation. The Journal of neuroscience: the official journal of the Society for Neuroscience. 2006;26(40):10129–40. Epub 2006/10/06. doi: 10.1523/JNEUROSCI.1202-06.2006 17021169.

15. Holcomb L, Gordon MN, McGowan E, Yu X, Benkovic S, Jantzen P, et al. Accelerated Alzheimer-type phenotype in transgenic mice carrying both mutant amyloid precursor protein and presenilin 1 transgenes. Nature medicine. 1998;4(1):97–100. Epub 1998/01/14. doi: 10.1038/nm0198-097 9427614.

16. Taylor SM, Sherman SA, Kirnarsky L, Sanderson SD. Development of response-selective agonists of human C5a anaphylatoxin: conformational, biological, and therapeutic considerations. Current medicinal chemistry. 2001;8(6):675–84. Epub 2001/04/03. doi: 10.2174/0929867013373156 11281848.

17. Pearson-Leary J, McNay EC. Intrahippocampal Administration of Amyloid-β(1–42) Oligomers Acutely Impairs Spatial Working Memory, Insulin Signaling, and Hippocampal MetAbolism. Journal of Alzheimer’s disease: JAD. 2012;30(2):413–22. doi: 10.3233/JAD-2012-112192 22430529

18. De Felice FG, Vieira MN, Bomfim TR, Decker H, Velasco PT, Lambert MP, et al. Protection of synapses against Alzheimer’s-linked toxins: insulin signaling prevents the pathogenic binding of Abeta oligomers. Proceedings of the National Academy of Sciences of the United States of America. 2009;106(6):1971–6. Epub 2009/02/04. doi: 10.1073/pnas.0809158106 19188609.

19. Moechars D, Lorent K, Van Leuven F. Premature death in transgenic mice that overexpress a mutant amyloid precursor protein is preceded by severe neurodegeneration and apoptosis. Neuroscience. 1999;91(3):819–30. Epub 1999/07/03. doi: 10.1016/s0306-4522(98)00599-5 10391465.

20. OlAbarria M, Noristani HN, Verkhratsky A, Rodriguez JJ. Concomitant astroglial atrophy and astrogliosis in a triple transgenic animal model of Alzheimer’s disease. Glia. 2010;58(7):831–8. Epub 2010/02/09. doi: 10.1002/glia.20967 20140958.

21. DeWitt DA, Perry G, Cohen M, Doller C, Silver J. Astrocytes regulate microglial phagocytosis of senile plaque cores of Alzheimer’s disease. Experimental neurology. 1998;149(2):329–40. Epub 1998/03/17. doi: 10.1006/exnr.1997.6738 9500964.

22. Ehrengruber MU, Geiser T, Deranleau DA. Activation of human neutrophils by C3a and C5A. Comparison of the effects on shape changes, chemotaxis, secretion, and respiratory burst. FEBS letters. 1994;346(2–3):181–4. Epub 1994/06/13. doi: 10.1016/0014-5793(94)00463-3 8013630.

23. Aksamit RR, Falk W, Leonard EJ. Chemotaxis by mouse macrophage cell lines. Journal of immunology. 1981;126(6):2194–9. Epub 1981/06/01. 7229371.

24. Gasque P, Singhrao SK, Neal JW, Gotze O, Morgan BP. Expression of the receptor for complement C5a (CD88) is up-regulated on reactive astrocytes, microglia, and endothelial cells in the inflamed human central nervous system. The American journal of pathology. 1997;150(1):31–41. Epub 1997/01/01. 9006319.

25. D’Mello C, Le T, Swain MG. Cerebral microglia recruit monocytes into the brain in response to tumor necrosis factoralpha signaling during peripheral organ inflammation. The Journal of neuroscience: the official journal of the Society for Neuroscience. 2009;29(7):2089–102. Epub 2009/02/21. doi: 10.1523/JNEUROSCI.3567-08.2009 19228962.

26. Baik SH, Cha MY, Hyun YM, Cho H, Hamza B, Kim DK, et al. Migration of neutrophils targeting amyloid plaques in Alzheimer’s disease mouse model. Neurobiology of aging. 2014;35(6):1286–92. Epub 2014/02/04. doi: 10.1016/j.neurobiolaging.2014.01.003 24485508.

27. Daley JM, Thomay AA, Connolly MD, Reichner JS, Albina JE. Use of Ly6G-specific monoclonal antibody to deplete neutrophils in mice. Journal of leukocyte biology. 2008;83(1):64–70. Epub 2007/09/22. doi: 10.1189/jlb.0407247 17884993.

28. Panayiotou E, Fella E, Papacharalambous R, Malas S, Saraiva MJ, Kyriakides T. C1q Ablation exacerbates amyloid deposition: A study in a transgenic mouse model of ATTRV30M amyloid neuropathy. PloS one. 2017;12(4):e0175767. Epub 2017/04/14. doi: 10.1371/journal.pone.0175767 28407005.

29. Doody RS, Raman R, Farlow M, Iwatsubo T, Vellas B, Joffe S, et al. A phase 3 trial of semagacestat for treatment of Alzheimer’s disease. The New England journal of medicine. 2013;369(4):341–50. Epub 2013/07/26. doi: 10.1056/NEJMoa1210951 23883379.

30. Doody RS, Thomas RG, Farlow M, Iwatsubo T, Vellas B, Joffe S, et al. Phase 3 trials of solanezumAb for mild-to-moderate Alzheimer’s disease. The New England journal of medicine. 2014;370(4):311–21. Epub 2014/01/24. doi: 10.1056/NEJMoa1312889 24450890.

31. Honig LS, Vellas B, Woodward M, Boada M, Bullock R, Borrie M, et al. Trial of SolanezumAb for Mild Dementia Due to Alzheimer’s Disease. The New England journal of medicine. 2018;378(4):321–30. Epub 2018/01/25. doi: 10.1056/NEJMoa1705971 29365294.

32. Sevigny J, Chiao P, Bussiere T, Weinreb PH, Williams L, Maier M, et al. The antibody aducanumAb reduces Abeta plaques in Alzheimer’s disease. Nature. 2016;537(7618):50–6. Epub 2016/09/02. doi: 10.1038/nature19323 27582220.

33. Fella E, Sokratous K, Papacharalambous R, Kyriacou K, Phillips J, Sanderson S, et al. Pharmacological Stimulation of Phagocytosis Enhances Amyloid Plaque Clearance; Evidence from a Transgenic Mouse Model of ATTR Neuropathy. Frontiers in molecular neuroscience. 2017;10(138). doi: 10.3389/fnmol.2017.00138 28539873

34. Matos M, Augusto E, Oliveira CR, Agostinho P. Amyloid-beta peptide decreases glutamate uptake in cultured astrocytes: involvement of oxidative stress and mitogen-activated protein kinase cascades. Neuroscience. 2008;156(4):898–910. Epub 2008/09/16. doi: 10.1016/j.neuroscience.2008.08.022 18790019.

35. Liddelow SA, Guttenplan KA, Clarke LE, Bennett FC, Bohlen CJ, Schirmer L, et al. Neurotoxic reactive astrocytes are induced by activated microglia. Nature. 2017;541(7638):481–7. Epub 2017/01/19. doi: 10.1038/nature21029 28099414.

36. Shah P, Lal N, Leung E, Traul DE, Gonzalo-Ruiz A, Geula C. Neuronal and axonal loss are selectively linked to fibrillar amyloid-{beta} within plaques of the aged primate cerebral cortex. The American journal of pathology. 2010;177(1):325–33. Epub 2010/05/22. doi: 10.2353/ajpath.2010.090937 20489158.

37. Serrano-Pozo A, Muzikansky A, Gomez-Isla T, Growdon JH, Betensky RA, Frosch MP, et al. Differential relationships of reactive astrocytes and microglia to fibrillar amyloid deposits in Alzheimer disease. Journal of neuropathology and experimental neurology. 2013;72(6):462–71. Epub 2013/05/10. doi: 10.1097/NEN.0b013e3182933788 23656989.

38. Gate D, Rezai-Zadeh K, Jodry D, Rentsendorj A, Town T. Macrophages in Alzheimer’s disease: the blood-borne identity. Journal of neural transmission. 2010;117(8):961–70. Epub 2010/06/03. doi: 10.1007/s00702-010-0422-7 20517700.

39. ChakrAbarty P, Jansen-West K, Beccard A, Ceballos-Diaz C, Levites Y, Verbeeck C, et al. Massive gliosis induced by interleukin-6 suppresses Abeta deposition in vivo: evidence against inflammation as a driving force for amyloid deposition. FASEB journal: official publication of the Federation of American Societies for Experimental Biology. 2010;24(2):548–59. Epub 2009/10/15. doi: 10.1096/fj.09-141754 19825975.

40. Kiyota T, Yamamoto M, Xiong H, Lambert MP, Klein WL, Gendelman HE, et al. CCL2 accelerates microglia-mediated Abeta oligomer formation and progression of neurocognitive dysfunction. PloS one. 2009;4(7):e6197. Epub 2009/07/14. doi: 10.1371/journal.pone.0006197 19593388.

41. Floden AM, Combs CK. Microglia demonstrate age-dependent interaction with amyloid-beta fibrils. Journal of Alzheimer’s disease: JAD. 2011;25(2):279–93. Epub 2011/03/16. doi: 10.3233/JAD-2011-101014 21403390.

42. Guedes JR, Lao T, Cardoso AL, El Khoury J. Roles of Microglial and Monocyte Chemokines and Their Receptors in Regulating Alzheimer’s Disease-Associated Amyloid-β and Tau Pathologies. Frontiers in neurology. 2018;9:549-. doi: 10.3389/fneur.2018.00549 30158892.

43. Malm T, Koistinaho M, Muona A, Magga J, Koistinaho J. The role and therapeutic potential of monocytic cells in Alzheimer’s disease. Glia. 2010;58(8):889–900. Epub 2010/02/16. doi: 10.1002/glia.20973 20155817.

44. Zenaro E, Pietronigro E, Della Bianca V, Piacentino G, Marongiu L, Budui S, et al. Neutrophils promote Alzheimer’s disease-like pathology and cognitive decline via LFA-1 integrin. Nature medicine. 2015;21(8):880–6. Epub 2015/07/28. doi: 10.1038/nm.3913 26214837.

45. Fiala M, Liu QN, Sayre J, Pop V, Brahmandam V, Graves MC, et al. Cyclooxygenase-2-positive macrophages infiltrate the Alzheimer’s disease brain and damage the blood-brain barrier. European journal of clinical investigation. 2002;32(5):360–71. Epub 2002/05/25. doi: 10.1046/j.1365-2362.2002.00994.x 12027877.

46. Malm TM, Koistinaho M, Parepalo M, Vatanen T, Ooka A, Karlsson S, et al. Bone-marrow-derived cells contribute to the recruitment of microglial cells in response to beta-amyloid deposition in APP/PS1 double transgenic Alzheimer mice. Neurobiology of disease. 2005;18(1):134–42. Epub 2005/01/15. doi: 10.1016/j.nbd.2004.09.009 15649704.

47. Fonseca MI, Ager RR, Chu SH, Yazan O, Sanderson SD, LaFerla FM, et al. Treatment with a C5aR antagonist decreases pathology and enhances behavioral performance in murine models of Alzheimer’s disease. Journal of immunology. 2009;183(2):1375–83. Epub 2009/06/30. doi: 10.4049/jimmunol.0901005 19561098.

48. Hernandez MX, Namiranian P, Nguyen E, Fonseca MI, Tenner AJ. C5a Increases the Injury to Primary Neurons Elicited by Fibrillar Amyloid Beta. ASN neuro. 2017;9(1):1759091416687871. Epub 2017/01/13. doi: 10.1177/1759091416687871 28078911.

Článek vyšel v časopise


2019 Číslo 12
Nejčtenější tento týden