Polyvinylalcohol-carbazate (PVAC) reduces red blood cell hemolysis


Autoři: Felix Sellberg aff001;  Fanny Fredriksson aff002;  Thomas Engstrand aff003;  Tim Melander Bowden aff004;  Bo Nilsson aff001;  Jaan Hong aff001;  Folke Knutson aff001;  David Berglund aff001
Působiště autorů: Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden aff001;  Department of Women’s and Children’s Health, Section of Pediatric Surgery, Uppsala University, Uppsala, Sweden aff002;  Department of Surgical Sciences, Uppsala University, Uppsala, Sweden aff003;  Department of Chemistry—Ångström Laboratory, Uppsala University, Uppsala, Sweden aff004
Vyšlo v časopise: PLoS ONE 14(12)
Kategorie: Research Article
doi: 10.1371/journal.pone.0225777

Souhrn

Background and objectives

The objective of this study was to investigate whether a soluble polymer and aldehyde-scavenger, polyvinylalcohol-carbazate (PVAC), can inhibit hemolysis in the storage of red blood cells (RBC).

Study design and methods

The effect of PVAC was assessed over a wide range of concentrations, using absorption spectroscopy to evaluate the level of hemolysis. Moreover, osmotic stability and aldehyde-scavenging potential of RBC were assessed after storage in PVAC.

Results

After test tube storage for two weeks, red blood cell hemolysis was lower with PVAC compared to controls (mean difference 23%, 95% CI 16–29%, p < 0.001). A higher level of hemolysis led to a pronounced effect with PVAC. RBC stored in PVAC improved both the binding of free aldehydes (p <0.001) and the osmotic stability (p = 0.0036).

Conclusion

Erythrocytes stored with PVAC showed less hemolysis, which might be explained by the ability of PVACs to stabilize the cell membrane and decrease oxidative injury.

Klíčová slova:

Acetaldehyde – Aldehydes – Blood – Hemoglobin – Immunoprecipitation – Red blood cells – Specimen storage – Hypotonic solutions


Zdroje

1. Broadway-Duren JB, Klaassen H. Anemias. Crit Care Nurs Clin North Am. 2013 Dec;25(4):411–26, v. doi: 10.1016/j.ccell.2013.09.004 24267278

2. Guerrero-Hue M, Rubio-Navarro A, Sevillano Á, Yuste C, Gutiérrez E, Palomino-Antolín A, et al. Adverse effects of the renal accumulation of haem proteins. Novel therapeutic approaches. Nefrol Publicacion Of Soc Espanola Nefrol. 2018 Feb;38(1):13–26.

3. Heireman L, Van Geel P, Musger L, Heylen E, Uyttenbroeck W, Mahieu B. Causes, consequences and management of sample hemolysis in the clinical laboratory. Clin Biochem. 2017 Dec 1;50(18):1317–22. doi: 10.1016/j.clinbiochem.2017.09.013 28947321

4. Lippi G, Salvagno GL, Favaloro EJ, Guidi GC. Survey on the prevalence of hemolytic specimens in an academic hospital according to collection facility: opportunities for quality improvement. Clin Chem Lab Med. 2009;47(5):616–8. doi: 10.1515/CCLM.2009.132 19317651

5. Jeffery J, Sharma A, Ayling RM. Detection of haemolysis and reporting of potassium results in samples from neonates. Ann Clin Biochem. 2009 May;46(Pt 3):222–5. doi: 10.1258/acb.2009.008241 19261676

6. Eikelboom JW, Cook RJ, Barty R, Liu Y, Arnold DM, Crowther MA, et al. Rationale and Design of the Informing Fresh versus Old Red Cell Management (INFORM) Trial: An International Pragmatic Randomized Trial. Transfus Med Rev. 2016 Jan;30(1):25–9. doi: 10.1016/j.tmrv.2015.11.002 26651419

7. García-Roa M, del Carmen Vicente-Ayuso M, Bobes AM, Pedraza AC, González-Fernández A, Martín MP, et al. Red blood cell storage time and transfusion: current practice, concerns and future perspectives. Blood Transfus. 2017 May;15(3):222–31. doi: 10.2450/2017.0345-16 28518049

8. Suzuki YJ, Carini M, Butterfield DA. Protein Carbonylation. Antioxid Redox Signal. 2010 Feb;12(3):323–5. doi: 10.1089/ars.2009.2887 19743917

9. Stadtman ER, Levine RL. Chemical Modification of Proteins by Reactive Oxygen Species. In: Dalle-Donne I, Scaloni A, Butterfield DA, editors. Redox Proteomics [Internet]. Hoboken, NJ, USA: John Wiley & Sons, Inc.; 2006 [cited 2019 Oct 27]. p. 1–23. Available from: http://doi.wiley.com/10.1002/0471973122.ch1

10. Bamji MS. Glutathione reductase activity in red blood cells and riboflavin nutritional status in humans. Clin Chim Acta. 1969 Nov;26(2):263–9. doi: 10.1016/0009-8981(69)90376-3 5352698

11. Kuhn V, Diederich L, Keller TCS, Kramer CM, Lückstädt W, Panknin C, et al. Red Blood Cell Function and Dysfunction: Redox Regulation, Nitric Oxide Metabolism, Anemia. Antioxid Redox Signal. 2017 May;26(13):718–42. doi: 10.1089/ars.2016.6954 27889956

12. Chaudhary R, Katharia R. Oxidative injury as contributory factor for red cells storage lesion during twenty eight days of storage. Blood Transfus. 2012 Jan;10(1):59–62. doi: 10.2450/2011.0107-10 22044961

13. EDQM. Guide to the preparation, use and quality assurance of blood components. 19th ed. 2017.

14. Sut C, Tariket S, Chou ML, Garraud O, Laradi S, Hamzeh-Cognasse H, et al. Duration of red blood cell storage and inflammatory marker generation. Blood Transfus [Internet]. 2017 [cited 2019 Oct 27]; Available from: http://doi.org/10.2450/2017.0343-16

15. Hong J, Nilsson Ekdahl K, Reynolds H, Larsson R, Nilsson B. A new in vitro model to study interaction between whole blood and biomaterials. Studies of platelet and coagulation activation and the effect of aspirin. Biomaterials. 1999 Apr;20(7):603–11. doi: 10.1016/s0142-9612(98)00210-5 10208402

16. L H. Liu. Targeting oxidation stress with functional polymer. DIVA Degree Proj Appl Biotechnol Upps Univ. 2013;

17. Knight JA, Voorhees RP, Martin L, Anstall H. Lipid peroxidation in stored red cells. Transfusion (Paris). 1992 May;32(4):354–7. doi: 10.1046/j.1537-2995.1992.32492263451.x 1585442


Článek vyšel v časopise

PLOS One


2019 Číslo 12