Intracerebroventricular administration of the thyroid hormone analog TRIAC increases its brain content in the absence of MCT8

Autoři: Soledad Bárez-López aff001;  Carmen Grijota-Martínez aff001;  Xiao-Hui Liao aff004;  Samuel Refetoff aff004;  Ana Guadaño-Ferraz aff001
Působiště autorů: Department of Endocrine and Nervous System Pathophysiology, Instituto de Investigaciones Biomédicas Alberto Sols, Consejo Superior de Investigaciones Científicas (CSIC)-Universidad Autónoma de Madrid (UAM), Madrid, Spain aff001;  Center for Biomedical Research on Rare Diseases (Ciberer), Instituto de Salud Carlos III, Madrid, Spain aff002;  Department of Cell Biology, Faculty of Biology, Universidad Complutense de Madrid, Madrid, Spain aff003;  Department of Medicine, The University of Chicago, Chicago, Illinois, United States of America aff004;  Department of Pediatrics, The University of Chicago, Chicago, Illinois, United States of America aff005;  Committee on Genetics, The University of Chicago, Chicago, Illinois, United States of America aff006
Vyšlo v časopise: PLoS ONE 14(12)
Kategorie: Research Article


Patients lacking the thyroid hormone (TH) transporter MCT8 present abnormal serum levels of TH: low thyroxine and high triiodothyronine. They also have severe neurodevelopmental defects resulting from cerebral hypothyroidism, most likely due to impaired TH transport across the brain barriers. The use of TH analogs, such as triiodothyroacetic acid (TRIAC), that can potentially access the brain in the absence of MCT8 and restore at least a subset of cerebral TH actions could improve the neurological defects in these patients. We hypothesized that direct administration of TRIAC into the brain by intracerebroventricular delivery to mice lacking MCT8 could bypass the restriction at the brain barriers and mediate TH action without causing hypermetabolism. We found that intracerebroventricular administration of therapeutic doses of TRIAC does not increase further plasma triiodothyronine or further decrease plasma thyroxine levels and does not alter TH content in the cerebral cortex. Although TRIAC content increased in the brain, it did not induce TH-mediated actions on selected target genes. Our data suggest that intracerebroventricular delivery of TRIAC has the ability to target the brain in the absence of MCT8 and should be further investigated to address its potential therapeutic use in MCT8 deficiency.

Klíčová slova:

Blood plasma – Brain damage – Central nervous system – Cerebral cortex – Gene expression – Routes of administration – Water resources – Hypothyroidism


1. Bernal J. Thyroid Hormones in Brain Development and Function. In: De Groot LJ, Beck-Peccoz P, Chrousos G, Dungan K, Grossman A, Hershman JM, et al., editors. Endotext. South Dartmouth (MA)2015.

2. Bernal J, Guadaño-Ferraz A, Morte B. Thyroid hormone transporters—functions and clinical implications. Nat Rev Endocrinol. 2015;11(7):406–17. doi: 10.1038/nrendo.2015.66 25942657.

3. Friesema EC, Ganguly S, Abdalla A, Manning Fox JE, Halestrap AP, Visser TJ. Identification of monocarboxylate transporter 8 as a specific thyroid hormone transporter. J Biol Chem. 2003;278(41):40128–35. doi: 10.1074/jbc.M300909200 12871948.

4. Allan W, Herndon C, Dudley F. Some examples of the inheritance of mental deficiency: apparently sex-linked idiocy and microencephaly. Am J Ment Defic. 1944;48:325–34.

5. Dumitrescu AM, Liao XH, Best TB, Brockmann K, Refetoff S. A novel syndrome combining thyroid and neurological abnormalities is associated with mutations in a monocarboxylate transporter gene. Am J Hum Genet. 2004;74(1):168–75. doi: 10.1086/380999 14661163; PubMed Central PMCID: PMC1181904.

6. Friesema EC, Grueters A, Biebermann H, Krude H, von Moers A, Reeser M, et al. Association between mutations in a thyroid hormone transporter and severe X-linked psychomotor retardation. Lancet. 2004;364(9443):1435–7. doi: 10.1016/S0140-6736(04)17226-7 15488219.

7. Schwartz CE, May MM, Carpenter NJ, Rogers RC, Martin J, Bialer MG, et al. Allan-Herndon-Dudley syndrome and the monocarboxylate transporter 8 (MCT8) gene. Am J Hum Genet. 2005;77(1):41–53. doi: 10.1086/431313 15889350; PubMed Central PMCID: PMC1226193.

8. Ceballos A, Belinchón MM, Sanchez-Mendoza E, Grijota-Martínez C, Dumitrescu AM, Refetoff S, et al. Importance of monocarboxylate transporter 8 for the blood-brain barrier-dependent availability of 3,5,3'-triiodo-L-thyronine. Endocrinology. 2009;150(5):2491–6. doi: 10.1210/en.2008-1616 19147674; PubMed Central PMCID: PMC2671898.

9. Iwayama H, Liao XH, Braun L, Bárez-López S, Kaspar B, Weiss RE, et al. Adeno Associated Virus 9-Based Gene Therapy Delivers a Functional Monocarboxylate Transporter 8, Improving Thyroid Hormone Availability to the Brain of Mct8-Deficient Mice. Thyroid. 2016;26(9):1311–9. doi: 10.1089/thy.2016.0060 27432638; PubMed Central PMCID: PMC5036314.

10. Vatine GD, Al-Ahmad A, Barriga BK, Svendsen S, Salim A, Garcia L, et al. Modeling Psychomotor Retardation using iPSCs from MCT8-Deficient Patients Indicates a Prominent Role for the Blood-Brain Barrier. Cell Stem Cell. 2017;20(6):831–43 e5. doi: 10.1016/j.stem.2017.04.002 28526555.

11. López-Espíndola D, Morales-Bastos C, Grijota-Martínez C, Liao XH, Lev D, Sugo E, et al. Mutations of the thyroid hormone transporter MCT8 cause prenatal brain damage and persistent hypomyelination. J Clin Endocrinol Metab. 2014;99(12):E2799–804. doi: 10.1210/jc.2014-2162 25222753; PubMed Central PMCID: PMC4255116.

12. Visser WE, Vrijmoeth P, Visser FE, Arts WF, van Toor H, Visser TJ. Identification, functional analysis, prevalence and treatment of monocarboxylate transporter 8 (MCT8) mutations in a cohort of adult patients with mental retardation. Clin Endocrinol (Oxf). 2013;78(2):310–5. doi: 10.1111/cen.12023 22924588.

13. Wemeau JL, Pigeyre M, Proust-Lemoine E, d'Herbomez M, Gottrand F, Jansen J, et al. Beneficial effects of propylthiouracil plus L-thyroxine treatment in a patient with a mutation in MCT8. J Clin Endocrinol Metab. 2008;93(6):2084–8. doi: 10.1210/jc.2007-2719 18334584.

14. Verge CF, Konrad D, Cohen M, Di Cosmo C, Dumitrescu AM, Marcinkowski T, et al. Diiodothyropropionic acid (DITPA) in the treatment of MCT8 deficiency. J Clin Endocrinol Metab. 2012;97(12):4515–23. doi: 10.1210/jc.2012-2556 22993035; PubMed Central PMCID: PMC3513545.

15. Groeneweg S, Peeters RP, Moran C, Stoupa A, Auriol F, Tonduti D, et al. Effectiveness and safety of the tri-iodothyronine analogue Triac in children and adults with MCT8 deficiency: an international, single-arm, open-label, phase 2 trial. Lancet Diabetes Endocrinol. 2019;7(9):695–706. Epub 2019/08/05. doi: 10.1016/S2213-8587(19)30155-X 31377265.

16. Müeller-Gäertner HW, Schneider C. 3,5,3'-Triiodothyroacetic acid minimizes the pituitary thyrotrophin secretion in patients on levo-thyroxine therapy after ablative therapy for differentiated thyroid carcinoma. Clin Endocrinol (Oxf). 1988;28(4):345–51. doi: 10.1111/j.1365-2265.1988.tb03665.x 3142712.

17. Anzai R, Adachi M, Sho N, Muroya K, Asakura Y, Onigata K. Long-term 3,5,3'-triiodothyroacetic acid therapy in a child with hyperthyroidism caused by thyroid hormone resistance: pharmacological study and therapeutic recommendations. Thyroid. 2012;22(10):1069–75. doi: 10.1089/thy.2011.0450 22947347.

18. Stagi S, Manoni C, Cirello V, Covelli D, Giglio S, Chiarelli F, et al. Diabetes mellitus in a girl with thyroid hormone resistance syndrome: a little recognized interaction between the two diseases. Hormones (Athens). 2014;13(4):561–7. doi: 10.14310/horm.2002.1502 25402385.

19. Messier N, Langlois MF. Triac regulation of transcription is T(3) receptor isoform- and response element-specific. Mol Cell Endocrinol. 2000;165(1–2):57–66. doi: 10.1016/s0303-7207(00)00266-5 10940484.

20. Horn S, Kersseboom S, Mayerl S, Muller J, Groba C, Trajkovic-Arsic M, et al. Tetrac can replace thyroid hormone during brain development in mouse mutants deficient in the thyroid hormone transporter mct8. Endocrinology. 2013;154(2):968–79. doi: 10.1210/en.2012-1628 23307789.

21. Kersseboom S, Horn S, Visser WE, Chen J, Friesema EC, Vaurs-Barriere C, et al. In vitro and mouse studies support therapeutic utility of triiodothyroacetic acid in MCT8 deficiency. Mol Endocrinol. 2015:me00009999. doi: 10.1210/me.0000-9999 25565257.

22. Bárez-López S, Obregon MJ, Martínez-de-Mena R, Bernal J, Guadaño-Ferraz A, Morte B. Effect of Triiodothyroacetic Acid Treatment in Mct8 Deficiency: A Word of Caution. Thyroid. 2016;26(5):618–26. doi: 10.1089/thy.2015.0388 26701289.

23. Cohen-Pfeffer JL, Gururangan S, Lester T, Lim DA, Shaywitz AJ, Westphal M, et al. Intracerebroventricular Delivery as a Safe, Long-Term Route of Drug Administration. Pediatr Neurol. 2017;67:23–35. doi: 10.1016/j.pediatrneurol.2016.10.022 28089765.

24. DeVos SL, Miller TM. Direct intraventricular delivery of drugs to the rodent central nervous system. J Vis Exp. 2013;(75):e50326. doi: 10.3791/50326 23712122; PubMed Central PMCID: PMC3679837.

25. Fleischhack G, Jaehde U, Bode U. Pharmacokinetics following intraventricular administration of chemotherapy in patients with neoplastic meningitis. Clin Pharmacokinet. 2005;44(1):1–31. doi: 10.2165/00003088-200544010-00001 15634030.

26. Dumitrescu AM, Liao XH, Weiss RE, Millen K, Refetoff S. Tissue-specific thyroid hormone deprivation and excess in monocarboxylate transporter (mct) 8-deficient mice. Endocrinology. 2006;147(9):4036–43. doi: 10.1210/en.2006-0390 16709608.

27. Morte B, Ceballos A, Díez D, Grijota-Martínez C, Dumitrescu AM, Di Cosmo C, et al. Thyroid hormone-regulated mouse cerebral cortex genes are differentially dependent on the source of the hormone: a study in monocarboxylate transporter-8- and deiodinase-2-deficient mice. Endocrinology. 2010;151(5):2381–7. doi: 10.1210/en.2009-0944 20211971; PubMed Central PMCID: PMC2869252.

28. Weeke J, Orskov H. Synthesis of 125I monolabelled 3, 5, 3'-triiodothyronine and thyroxine of maximum specific activity for radioimmunoassay. Scand J Clin Lab Invest. 1973;32(4):357–60. doi: 10.3109/00365517309084359 4589074.

29. Obregon MJ, Morreale de Escobar G, Escobar del Rey F. Concentrations of triiodo-L-thyronine in the plasma and tissues of normal rats, as determined by radioimmunoassay: comparison with results obtained by an isotopic equilibrium technique. Endocrinology. 1978;103(6):2145–53. doi: 10.1210/endo-103-6-2145 748038.

30. Morreale de Escobar G, Pastor R, Obregon MJ, Escobar del Rey F. Effects of maternal hypothyroidism on the weight and thyroid hormone content of rat embryonic tissues, before and after onset of fetal thyroid function. Endocrinology. 1985;117(5):1890–900. doi: 10.1210/endo-117-5-1890 4042969.

31. Ruiz de Oña C, Obregon MJ, Escobar del Rey F, Morreale de Escobar G. Developmental changes in rat brain 5'-deiodinase and thyroid hormones during the fetal period: the effects of fetal hypothyroidism and maternal thyroid hormones. Pediatr Res. 1988;24(5):588–94. doi: 10.1203/00006450-198811000-00010 3205610.

32. Medina-Gomez G, Calvo RM, Obregon MJ. Thermogenic effect of triiodothyroacetic acid at low doses in rat adipose tissue without adverse side effects in the thyroid axis. Am J Physiol Endocrinol Metab. 2008;294(4):E688–97. doi: 10.1152/ajpendo.00417.2007 18285526.

33. Pohlenz J, Maqueem A, Cua K, Weiss RE, Van Sande J, Refetoff S. Improved radioimmunoassay for measurement of mouse thyrotropin in serum: strain differences in thyrotropin concentration and thyrotroph sensitivity to thyroid hormone. Thyroid. 1999;9(12):1265–71. Epub 2000/01/26. doi: 10.1089/thy.1999.9.1265 10646670.

34. Trajkovic M, Visser TJ, Mittag J, Horn S, Lukas J, Darras VM, et al. Abnormal thyroid hormone metabolism in mice lacking the monocarboxylate transporter 8. J Clin Invest. 2007;117(3):627–35. doi: 10.1172/JCI28253 17318265; PubMed Central PMCID: PMC1797602.

35. Beck-Peccoz P, Sartorio A, De Medici C, Grugni G, Morabito F, Faglia G. Dissociated thyromimetic effects of 3, 5, 3'-triiodothyroacetic acid (TRIAC) at the pituitary and peripheral tissue levels. J Endocrinol Invest. 1988;11(2):113–8. doi: 10.1007/bf03350116 3361080.

36. Bracco D, Morin O, Schutz Y, Liang H, Jequier E, Burger AG. Comparison of the metabolic and endocrine effects of 3,5,3'-triiodothyroacetic acid and thyroxine. J Clin Endocrinol Metab. 1993;77(1):221–8. doi: 10.1210/jcem.77.1.8325946 8325946.

37. Everts ME, Visser TJ, Moerings EP, Docter R, van Toor H, Tempelaars AM, et al. Uptake of triiodothyroacetic acid and its effect on thyrotropin secretion in cultured anterior pituitary cells. Endocrinology. 1994;135(6):2700–7. doi: 10.1210/endo.135.6.7988460 7988460.

38. Gil-Ibañez P, Garcia-Garcia F, Dopazo J, Bernal J, Morte B. Global Transcriptome Analysis of Primary Cerebrocortical Cells: Identification of Genes Regulated by Triiodothyronine in Specific Cell Types. Cereb Cortex. 2017;27(1):706–17. doi: 10.1093/cercor/bhv273 26534908.

39. Bárez-López S, Grijota-Martínez C, Ausó E, Fernández-de Frutos M, Montero-Pedrazuela A, Guadaño-Ferraz A. Adult Mice Lacking Mct8 and Dio2 Proteins Present Alterations in Peripheral Thyroid Hormone Levels and Severe Brain and Motor Skill Impairments. Thyroid. 2019. Epub 2019/07/31. doi: 10.1089/thy.2019.0068 31359845.

40. Mayerl S, Muller J, Bauer R, Richert S, Kassmann CM, Darras VM, et al. Transporters MCT8 and OATP1C1 maintain murine brain thyroid hormone homeostasis. J Clin Invest. 2014;124(5):1987–99. doi: 10.1172/JCI70324 24691440; PubMed Central PMCID: PMC4001533.

41. Köhrle J. The Colorful Diversity of Thyroid Hormone Metabolites. Eur Thyroid J. 2019;8(3):115–29. Epub 2019/07/02. doi: 10.1159/000497141 31259154; PubMed Central PMCID: PMC6587369.

Článek vyšel v časopise


2019 Číslo 12
Nejčtenější tento týden