Free thiol groups on poly(aspartamide) based hydrogels facilitate tooth-derived progenitor cell proliferation and differentiation

Autoři: Orsolya Hegedűs aff001;  Dávid Juriga aff002;  Evelin Sipos aff002;  Constantinos Voniatis aff002;  Ákos Juhász aff002;  Abdenaccer Idrissi aff003;  Miklós Zrínyi aff002;  Gábor Varga aff001;  Angéla Jedlovszky-Hajdú aff002;  Krisztina S. Nagy aff001
Působiště autorů: Department of Oral Biology, Semmelweis University, Budapest, Hungary aff001;  Laboratory of Nanochemistry, Department of Biophysics and Radiation Biology, Semmelweis University, Budapest, Hungary aff002;  University of Lille, Faculty of Science and Technology, Villeneuve d’Ascq Cedex, France aff003
Vyšlo v časopise: PLoS ONE 14(12)
Kategorie: Research Article


Cell-based tissue reconstruction is an important field of regenerative medicine. Stem and progenitor cells derived from tooth-associated tissues have strong regeneration potential. However, their in vivo application requires the development of novel scaffolds that will provide a suitable three-dimensional (3D) environment allowing not only the survival of the cells but eliciting their proliferation and differentiation. Our aim was to study the viability and differentiation capacity of periodontal ligament cells (PDLCs) cultured on recently developed biocompatible and biodegradable poly(aspartamide) (PASP)-based hydrogels. Viability and behavior of PDLCs were investigated on PASP-based hydrogels possessing different chemical, physical and mechanical properties. Based on our previous results, the effect of thiol group density in the polymer matrix on cell viability, morphology and differentiation ability is in the focus of our article. The chemical composition and 3D structures of the hydrogels were determined by FT Raman spectroscopy and Scanning Electron Microscopy. Morphology of the cells was examined by phase contrast microscopy. To visualize cell growth and migration patterns through the hydrogels, two-photon microscopy were utilized. Cell viability analysis was performed according to a standardized protocol using WST-1 reagent. PDLCs were able to attach and grow on PASP-based hydrogels. An increase in gel stiffness enhanced adhesion and proliferation of the cells. However, the highest population of viable cells was observed on the PASP gels containing free thiol groups. The presence of thiol groups does not only enhance viability but also facilitates the osteogenic direction of the differentiating cells. These cell-gel structures seem to be highly promising for cell-based tissue reconstruction purposes in the field of regenerative medicine.

Klíčová slova:

Cell differentiation – Cross-linking – Gels – Photons – Scanning electron microscopy – Stem cells – Thiols – Phase contrast microscopy


1. de Wert G, Mummery C. Human embryonic stem cells: research, ethics and policy. Hum Reprod. 2003;18(4):672–82. Epub 2003/03/28. doi: 10.1093/humrep/deg143 12660256.

2. Shafei AE, Ali MA, Ghanem HG, Shehata AI, Abdelgawad AA, Handal HR, et al. Mesenchymal stem cell therapy: A promising cell-based therapy for treatment of myocardial infarction. J Gene Med. 2017;19(12). doi: 10.1002/jgm.2995 29044850.

3. Bianco P, Riminucci M, Gronthos S, Robey PG. Bone marrow stromal stem cells: nature, biology, and potential applications. Stem Cells. 2001;19(3):180–92. Epub 2001/05/22. doi: 10.1634/stemcells.19-3-180 11359943.

4. Huang GT, Gronthos S, Shi S. Mesenchymal stem cells derived from dental tissues vs. those from other sources: their biology and role in regenerative medicine. J Dent Res. 2009;88(9):792–806. Epub 2009/09/22. doi: 10.1177/0022034509340867 19767575.

5. Seo BM, Miura M, Gronthos S, Bartold PM, Batouli S, Brahim J, et al. Investigation of multipotent postnatal stem cells from human periodontal ligament. Lancet. 2004;364(9429):149–55. Epub 2004/07/13. doi: 10.1016/S0140-6736(04)16627-0 15246727.

6. Tang R, Wei F, Wei L, Wang S, Ding G. Osteogenic differentiated periodontal ligament stem cells maintain their immunomodulatory capacity. J Tissue Eng Regen Med. 2014;8(3):226–32. Epub 2012/06/16. doi: 10.1002/term.1516 22700341.

7. Xu Q, Li B, Yuan L, Dong Z, Zhang H, Wang H, et al. Combination of platelet-rich plasma within periodontal ligament stem cell sheets enhances cell differentiation and matrix production. J Tissue Eng Regen Med. 2017;11(3):627–36. Epub 2014/09/05. doi: 10.1002/term.1953 25186188.

8. Zhou Y, Hutmacher DW, Sae-Lim V, Zhou Z, Woodruff M, Lim TM. Osteogenic and adipogenic induction potential of human periodontal cells. J Periodontol. 2008;79(3):525–34. doi: 10.1902/jop.2008.070373 18315436.

9. Kadar K, Kiraly M, Porcsalmy B, Molnar B, Racz GZ, Blazsek J, et al. Differentiation potential of stem cells from human dental origin—promise for tissue engineering. J Physiol Pharmacol. 2009;60 Suppl 7:167–75. Epub 2010/04/24. 20388961.

10. Foldes A, Kadar K, Keremi B, Zsembery A, Gyires K, Z SZ, et al. Mesenchymal Stem Cells of Dental Origin-Their Potential for Antiinflammatory and Regenerative Actions in Brain and Gut Damage. Curr Neuropharmacol. 2016;14(8):914–34. doi: 10.2174/1570159X14666160121115210 26791480.

11. Drury JL, Mooney DJ. Hydrogels for tissue engineering: scaffold design variables and applications. Biomaterials. 2003;24(24):4337–51. doi: 10.1016/s0142-9612(03)00340-5 12922147.

12. Sarraf C. Emerging themes of cancer stem cells: editorial—overview. Cell Prolif. 2005;38(6):343–5. doi: 10.1111/j.1365-2184.2005.00360.x 16300647.

13. Stephan MT, Irvine DJ. Enhancing Cell therapies from the Outside In: Cell Surface Engineering Using Synthetic Nanomaterials. Nano Today. 2011;6(3):309–25. Epub 2011/08/10. doi: 10.1016/j.nantod.2011.04.001 21826117.

14. Stenzel MH. Bioconjugation Using Thiols: Old Chemistry Rediscovered to Connect Polymers with Nature’s Building Blocks. ACS Macro Letters. 2012;2(1):14–8. doi: 10.1021/mz3005814

15. Su J. Thiol-Mediated Chemoselective Strategies for In Situ Formation of Hydrogels. Gels. 2018;4(3). Epub 2019/01/25. doi: 10.3390/gels4030072 30674848.

16. Hu BH, Su J, Messersmith PB. Hydrogels cross-linked by native chemical ligation. Biomacromolecules. 2009;10(8):2194–200. Epub 2009/07/16. doi: 10.1021/bm900366e 19601644.

17. Poole LB. The basics of thiols and cysteines in redox biology and chemistry. Free Radic Biol Med. 2015;80:148–57. Epub 2014/11/30. doi: 10.1016/j.freeradbiomed.2014.11.013 25433365.

18. Galli C, Parisi L, Elviri L, Bianchera A, Smerieri A, Lagonegro P, et al. Chitosan scaffold modified with D-(+) raffinose and enriched with thiol-modified gelatin for improved osteoblast adhesion. Biomed Mater. 2016;11(1):015004. Epub 2016/02/03. doi: 10.1088/1748-6041/11/1/015004 26836318.

19. Mun EA, Williams AC, Khutoryanskiy VV. Adhesion of thiolated silica nanoparticles to urinary bladder mucosa: Effects of PEGylation, thiol content and particle size. Int J Pharm. 2016;512(1):32–8. Epub 2016/08/18. doi: 10.1016/j.ijpharm.2016.08.026 27530813.

20. Yu J, Wei W, Danner E, Ashley RK, Israelachvili JN, Waite JH. Mussel protein adhesion depends on interprotein thiol-mediated redox modulation. Nat Chem Biol. 2011;7(9):588–90. Epub 2011/08/02. doi: 10.1038/nchembio.630 21804534.

21. El-Sherbiny IM, Yacoub MH. Hydrogel scaffolds for tissue engineering: Progress and challenges. Glob Cardiol Sci Pract. 2013;2013(3):316–42. Epub 2013/01/01. doi: 10.5339/gcsp.2013.38 24689032.

22. Nezhad-Mokhtari P, Ghorbani M, Roshangar L, Soleimani Rad J. A review on the construction of hydrogel scaffolds by various chemically techniques for tissue engineering. European Polymer Journal. 2019;117:64–76. doi: 10.1016/j.eurpolymj.2019.05.004

23. Croisier F, Jérôme C. Chitosan-based biomaterials for tissue engineering. European Polymer Journal. 2013;49(4):780–92. doi: 10.1016/j.eurpolymj.2012.12.009

24. Dong R, Pang Y, Su Y, Zhu X. Supramolecular hydrogels: synthesis, properties and their biomedical applications. Biomater Sci. 2015;3(7):937–54. doi: 10.1039/c4bm00448e 26221932.

25. Lima DS, Tenório-Neto ET, Lima-Tenório MK, Guilherme MR, Scariot DB, Nakamura CV, et al. pH-responsive alginate-based hydrogels for protein delivery. Journal of Molecular Liquids. 2018;262:29–36.

26. Siangsanoh C, Ummartyotin S, Sathirakul K, Rojanapanthu P, Treesuppharat W. Fabrication and characterization of triple-responsive composite hydrogel for targeted and controlled drug delivery system. Journal of Molecular Liquids. 2018;256:90–9.

27. Sawicki LA, Kloxin AM. Design of thiol-ene photoclick hydrogels using facile techniques for cell culture applicationsdaggerElectronic supplementary information (ESI) available. See 10.1039/c4bm00187gClick here for additional data file. Biomater Sci. 2014;2(11):1612–26. 25717375.

28. Tibbitt MW, Anseth KS. Hydrogels as extracellular matrix mimics for 3D cell culture. Biotechnol Bioeng. 2009;103(4):655–63. Epub 2009/05/28. doi: 10.1002/bit.22361 19472329.

29. Shoichet MS. Polymer Scaffolds for Biomaterials Applications. Macromolecules. 2010;43(2):581–91.

30. Ghosal K, Latha MS, Thomas S. Poly(ester amides) (PEAs)–Scaffold for tissue engineering applications. European Polymer Journal. 2014;60:58–68. doi: 10.1016/j.eurpolymj.2014.08.006

31. Sattari S, Dadkhah Tehrani A, Adeli M, Azarbani F. Development of new nanostructure based on poly(aspartic acid)-g-amylose for targeted curcumin delivery using helical inclusion complex. Journal of Molecular Liquids. 2018;258:18–26.

32. Webber MJ, Kessler JA, Stupp SI. Emerging peptide nanomedicine to regenerate tissues and organs. J Intern Med. 2010;267(1):71–88. Epub 2010/01/12. doi: 10.1111/j.1365-2796.2009.02184.x 20059645.

33. Altunbas A, Pochan DJ. Peptide-based and polypeptide-based hydrogels for drug delivery and tissue engineering. Top Curr Chem. 2012;310:135–67. doi: 10.1007/128_2011_206 21809190.

34. Juriga D, Nagy K, Jedlovszky-Hajdu A, Perczel-Kovach K, Chen YM, Varga G, et al. Biodegradation and Osteosarcoma Cell Cultivation on Poly(aspartic acid) Based Hydrogels. ACS Appl Mater Interfaces. 2016;8(36):23463–76. doi: 10.1021/acsami.6b06489 27541725.

35. Molnar K, Jedlovszky-Hajdu A, Zrinyi M, Jiang S, Agarwal S. Poly(amino acid)-Based Gel Fibers with pH Responsivity by Coaxial Reactive Electrospinning. Macromol Rapid Commun. 2017;38(14). Epub 2017/05/11. doi: 10.1002/marc.201700147 28488377.

36. Studenovska H, Vodicka P, Proks V, Hlucilova J, Motlik J, Rypacek F. Synthetic poly(amino acid) hydrogels with incorporated cell-adhesion peptides for tissue engineering. J Tissue Eng Regen Med. 2010;4(6):454–63. doi: 10.1002/term.256 20084624.

37. Svobodova J, Proks V, Karabiyik O, Calikoglu Koyuncu AC, Torun Kose G, Rypacek F, et al. Poly(amino acid)-based fibrous scaffolds modified with surface-pendant peptides for cartilage tissue engineering. J Tissue Eng Regen Med. 2017;11(3):831–42. doi: 10.1002/term.1982 25583414.

38. Gyarmati B, Vajna B, Nemethy A, Laszlo K, Szilagyi A. Redox- and pH-responsive cysteamine-modified poly(aspartic acid) showing a reversible sol-gel transition. Macromol Biosci. 2013;13(5):633–40. Epub 2013/03/21. doi: 10.1002/mabi.201200420 23512318.

39. Diniz IM, Chen C, Xu X, Ansari S, Zadeh HH, Marques MM, et al. Pluronic F-127 hydrogel as a promising scaffold for encapsulation of dental-derived mesenchymal stem cells. J Mater Sci Mater Med. 2015;26(3):153. Epub 2015/03/17. doi: 10.1007/s10856-015-5493-4 25773231.

40. Park SH, Kwon JS, Lee BS, Park JH, Lee BK, Yun JH, et al. BMP2-modified injectable hydrogel for osteogenic differentiation of human periodontal ligament stem cells. Sci Rep. 2017;7(1):6603. Epub 2017/07/28. doi: 10.1038/s41598-017-06911-8 28747761.

41. Gong C, Lu C, Li B, Shan M, Wu G. Injectable dopamine-modified poly(alpha,beta-aspartic acid) nanocomposite hydrogel as bioadhesive drug delivery system. J Biomed Mater Res A. 2017;105(4):1000–8. Epub 2016/10/16. doi: 10.1002/jbm.a.35931 27739644.

42. Lu C, Wang X, Wu G, Wang J, Wang Y, Gao H, et al. An injectable and biodegradable hydrogel based on poly(alpha,beta-aspartic acid) derivatives for localized drug delivery. J Biomed Mater Res A. 2014;102(3):628–38. Epub 2013/04/05. doi: 10.1002/jbm.a.34725 23554110.

43. Szilágyi BÁ, Némethy Á, Magyar A, Szabó I, Bősze S, Gyarmati B, et al. Amino acid based polymer hydrogel with enzymatically degradable cross-links. Reactive and Functional Polymers. 2018;133:21–8. doi: 10.1016/j.reactfunctpolym.2018.09.015

44. Nemeth C, Gyarmati B, Abdullin T, Laszlo K, Szilagyi A. Poly(aspartic acid) with adjustable pH-dependent solubility. Acta Biomater. 2017;49:486–94. Epub 2016/12/05. doi: 10.1016/j.actbio.2016.11.065 27915021.

45. Kim HY, Kim HN, Lee SJ, Song JE, Kwon SY, Chung JW, et al. Effect of pore sizes of PLGA scaffolds on mechanical properties and cell behaviour for nucleus pulposus regeneration in vivo. J Tissue Eng Regen Med. 2017;11(1):44–57. doi: 10.1002/term.1856 24619952.

46. Engler AJ, Sen S, Sweeney HL, Discher DE. Matrix elasticity directs stem cell lineage specification. Cell. 2006;126(4):677–89. Epub 2006/08/23. doi: 10.1016/j.cell.2006.06.044 16923388.

47. Khatiwala CB, Peyton SR, Putnam AJ. Intrinsic mechanical properties of the extracellular matrix affect the behavior of pre-osteoblastic MC3T3-E1 cells. Am J Physiol Cell Physiol. 2006;290(6):C1640–50. Epub 2006/01/13. doi: 10.1152/ajpcell.00455.2005 16407416.

48. Wang HB, Dembo M, Wang YL. Substrate flexibility regulates growth and apoptosis of normal but not transformed cells. Am J Physiol Cell Physiol. 2000;279(5):C1345–50. Epub 2000/10/13. doi: 10.1152/ajpcell.2000.279.5.C1345 11029281.

49. Matsusaki M, Yoshida H, Akashi M. The construction of 3D-engineered tissues composed of cells and extracellular matrices by hydrogel template approach. Biomaterials. 2007;28(17):2729–37. doi: 10.1016/j.biomaterials.2007.02.015 17336376.

50. Hasan A, Pattanayek SK, Pandey LM. Effect of Functional Groups of Self-Assembled Monolayers on Protein Adsorption and Initial Cell Adhesion. ACS Biomaterials Science & Engineering. 2018;4(9):3224–33. doi: 10.1021/acsbiomaterials.8b00795

51. Chang H-Y, Huang C-C, Lin K-Y, Kao W-L, Liao H-Y, You Y-W, et al. Effect of Surface Potential on NIH3T3 Cell Adhesion and Proliferation. The Journal of Physical Chemistry C. 2014;118(26):14464–70. doi: 10.1021/jp504662c

52. Bae IH, Jeong BC, Kook MS, Kim SH, Koh JT. Evaluation of a thiolated chitosan scaffold for local delivery of BMP-2 for osteogenic differentiation and ectopic bone formation. Biomed Res Int. 2013;2013:878930. Epub 2013/09/12. doi: 10.1155/2013/878930 24024213.

53. Jiang Z, Li C, Manuel ML, Yuan S, Kevil CG, McCarter KD, et al. Role of hydrogen sulfide in early blood-brain barrier disruption following transient focal cerebral ischemia. PLoS One. 2015;10(2):e0117982. Epub 2015/02/20. doi: 10.1371/journal.pone.0117982 25695633.

54. Cen SD, Yu WB, Ren MM, Chen LJ, Sun CF, Ye ZL, et al. Endogenous hydrogen sulfide is involved in osteogenic differentiation in human periodontal ligament cells. Arch Oral Biol. 2016;68:1–8. Epub 2016/04/02. doi: 10.1016/j.archoralbio.2016.03.009 27035752.

55. Hoemann CD, El-Gabalawy H, McKee MD. In vitro osteogenesis assays: influence of the primary cell source on alkaline phosphatase activity and mineralization. Pathol Biol (Paris). 2009;57(4):318–23. Epub 2008/10/10. doi: 10.1016/j.patbio.2008.06.004 18842361.

56. Nagy K, Lang O, Lang J, Perczel-Kovach K, Gyulai-Gaal S, Kadar K, et al. A novel hydrogel scaffold for periodontal ligament stem cells. Interv Med Appl Sci. 2018;10(3):162–70. Epub 2019/02/05. doi: 10.1556/1646.10.2018.21 30713756.

Článek vyšel v časopise


2019 Číslo 12
Nejčtenější tento týden