Prevalence of vitamin D deficiency in women from southern Brazil and association with vitamin D-binding protein levels and GC-DBP gene polymorphisms


Autoři: Betânia Rodrigues Santos aff001;  Nathália Cruz Costa aff001;  Thais Rasia Silva aff001;  Karen Oppermann aff003;  Jose Antonio Magalhães aff004;  Gislaine Casanova aff001;  Poli Mara Spritzer aff001
Působiště autorů: Gynecological Endocrinology Unit, Division of Endocrinology, Hospital de Clínicas de Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil aff001;  Laboratory of Molecular Endocrinology, Department of Physiology, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil aff002;  Medical School, Universidade de Passo Fundo and Hospital São Vicente de Paulo, Passo Fundo, Rio Grande do Sul, Brazil aff003;  Division of Gynecology and Obstetrics, Hospital de Clínicas de Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil aff004
Vyšlo v časopise: PLoS ONE 14(12)
Kategorie: Research Article
doi: 10.1371/journal.pone.0226215

Souhrn

Vitamin D deficiency is highly prevalent worldwide, and vitamin D-binding protein (DBP) a major regulator of serum vitamin D levels. The rs4588 and rs7041 polymorphisms of the GC gene constitute the genetic basis of the three major isoforms of circulating DBP (GC1s, GC1f, and GC2), while the rs2282679 variant is located in an important regulatory region of the GC gene. The aim of this study was to assess the prevalence of 25-hydroxyvitamin D [25(OH)D] deficiency and to ascertain whether it is associated with DBP levels and with GC gene variants. Biorepository samples of 443 women aged 20 to 72 years, with no evidence of clinical disease, were analyzed. Circulating levels of 25(OH)D were considered sufficient if ≥20 ng/mL and deficient if <20 ng/mL. Genotype analysis was performed by RT-PCR. Mean age was 53.4±9.4 years; mean BMI was 27.8±5.8 kg/m2. The overall sample had mean 25(OH)D levels of 22.8±8.3 ng/mL; 39.7% of participants had deficient circulating 25(OH)D levels. Higher prevalence ratios (PR) of 25(OH)D deficiency were found for the CC genotype of rs2282679 (PR 1.74; 95%CI 1.30 to 2.24; p<0.001), GC2 isoform (PR 1.66; 95%CI 1.17 to 2.38; p = 0.005), time since menopause (PR 1.02; 95%CI 1.003 to 1.03, p = 0.016), and HOMA-IR (PR 1.02; 95%CI 1.01 to 1.03, p = 0.004). DBP levels (per 30 μg/mL increase in DBP) were associated with lower PR for 25(OH)D deficiency (PR 0.89; 95%CI 0.80;0.99; p = 0.027). Except for HOMA-IR, these prevalence ratios remained significant after adjustment for age and BMI. In conclusion, the rs2282679 polymorphism and the GC2 isoform of DBP were associated with lower serum DBP levels and with susceptibility to 25(OH)D deficiency in Brazilian women with no evidence of clinical disease.

Klíčová slova:

estradiol – Cholesterol – Molecular genetics – Vitamins


Zdroje

1. van Schoor N, Lips P. Global Overview of Vitamin D Status. Endocrinol Metab Clin North Am. 2017;46(4):845–70. doi: 10.1016/j.ecl.2017.07.002 29080639

2. Palacios C, Gonzalez L. Is vitamin D deficiency a major global public health problem? Journal of Steroid Biochemistry & Molecular Biology. 2014;144:138–45.

3. Holick MF. The vitamin D deficiency pandemic: Approaches for diagnosis, treatment and prevention. Rev Endocr Metab Disord. 2017;18(2):153–65. doi: 10.1007/s11154-017-9424-1 28516265

4. Holick MF. Vitamin D deficiency in 2010: health benefits of vitamin D and sunlight: a D-bate. Nat Rev Endocrinol. 2011;7(2):73–5. doi: 10.1038/nrendo.2010.234 21263437

5. Santos BR, Lecke SB, Spritzer PM. Apa-I polymorphism in VDR gene is related to metabolic syndrome in polycystic ovary syndrome: a cross-sectional study. Reproductive Biology and Endocrinology. 2018;16(1):38–45. doi: 10.1186/s12958-018-0355-9 29669566

6. Tsuprykov O, Chen X, Hocher CF, Skoblo R, Lianghong Yin, Hocher B. Why should we measure free 25(OH) vitamin D? Journal of Steroid Biochemistry and Molecular Biology. 2018;180:87–104. doi: 10.1016/j.jsbmb.2017.11.014 29217467

7. Bikle DD, Malmstroem S, Schwartz J. Current Controversies: Are Free Vitamin Metabolite Levels a More Accurate Assessment of Vitamin D Status than Total Levels? Endocrinology and Metabolism Clinics of North America. 2017;46(4):901–18. doi: 10.1016/j.ecl.2017.07.013 29080642

8. Li C, Chen P, Duan X, Wang J, Shu B, Li X, et al. Bioavailable 25(OH)D but Not Total 25(OH)D Is an Independent Determinant for Bone Mineral Density in Chinese Postmenopausal Women. EBioMedicine. 2017;15:184–92. doi: 10.1016/j.ebiom.2016.11.029 27919752

9. Pop LC, Shapses SA, Chang B, Sun W, Wang X. Vitamin D-Binding Protein in Healthy Pre- and Postmenopausal Women: Relationship with Estradiol Concentrations. Endocrine Practice. 2015;21(8):936–42. doi: 10.4158/EP15623.OR 26121448

10. Kilpatrick LE, Phinney KW. Quantification of Total Vitamin-D-Binding Protein and the Glycosylated Isoforms by Liquid Chromatography-Isotope Dilution Mass Spectrometry. Journal of Proteome Research. 2017;16(11):4185–95. doi: 10.1021/acs.jproteome.7b00560 28990783

11. Lauridsen AL, Vestergaard P, Hermann AP, Brot C, Heickendorff L, Mosekilde L, et al. Plasma concentrations of 25-hydroxy-vitamin D and 1,25-dihydroxy-vitamin D are related to the phenotype of Gc (vitamin D-binding protein): A cross-sectional study on 595—Early postmenopausal women. Calcified Tissue International. 2005;77(1):15–22. doi: 10.1007/s00223-004-0227-5 15868280

12. Szili B, Szabó B, Horváth P, Bakos B, Kirschner G, Kósa JP, et al. Impact of genetic influence on serum total- and free 25-hydroxyvitamin-D in humans. Journal of Steroid Biochemistry and Molecular Biology. 2018;183:62–7. doi: 10.1016/j.jsbmb.2018.05.007 29792983

13. Carpenter TO, Zhang JH, Parra E, Ellis BK, Simpson C, Lee WL, et al. Vitamin D Binding Protein is a key determinant of 25-hydroxyvitamin D levels in infants and toddlers. Journal of Bone and Mineral Research. 2013;28(1):231–21.

14. Robinson-Cohen C, Zelnick LR, Hoofnagle AN, Lutsey PL, Burke G, Michos ED, et al. Associations of Vitamin D-Binding Globulin and Bioavailable Vitamin D Concentrations With Coronary Heart Disease Events: The Multi-Ethnic Study of Atherosclerosis (MESA). Journal of Clinical Endocrinology & Metabolism. 2017;102(8):3075–84.

15. Fang Y, van Meurs JBJ, Arp P, van Leeuwen JPT, Hofman A, Pols HAP, et al. Vitamin D Binding Protein Genotype and Osteoporosis. Calcified Tissue International. 2009;85(2):85–93. doi: 10.1007/s00223-009-9251-9 19488670

16. Santos BR, Mascarenhas LPG, Boguszewski MCS, Spritzer PM. Variations in the Vitamin D-Binding Protein (DBP) Gene Are Related to Lower 25-Hydroxyvitamin D Levels in Healthy Girls: A Cross-Sectional Study. Hormone Research in Paediatrics. 2013;79(3):162–8.

17. Santos BR, Lecke SB, Spritzer PM. Genetic variant in vitamin D-binding protein is associated with metabolic syndrome and lower 25-hydroxyvitamin D levels in polycystic ovary syndrome: A cross-sectional study. PLoS One. 2017;12(3):e0173695. doi: 10.1371/journal.pone.0173695 28278285

18. Bertoccini L, Bailetti D, Buzzetti R, Cavallo MG, Copetti M, Cossu E, et al. Variability in genes regulating vitamin D metabolism is associated with vitamin D levels in type 2 diabetes. Oncotarget. 2018;9(79):34911–8. doi: 10.18632/oncotarget.26178 30405883

19. Rivera-Paredez B, Macías N, Martínez-Aguilar MM, Hidalgo-Bravo A, Flores M, Quezada-Sánchez AD, et al. Association between Vitamin D Deficiency and Single Nucleotide Polymorphisms in the Vitamin D Receptor and GC Genes and Analysis of Their Distribution in Mexican Postmenopausal Women. Nutrients. 2018;10(9):1175–93.

20. Kwak SY, Yongjoo Park C, Jo G, Yoen Kim O, Shin MJ. Association among genetic variants in the vitamin D pathway and circulating 25-hydroxyvitamin D levels in Korean adults: results from the Korea National Health and Nutrition Examination Survey 2011–2012. Endocrine Journal. 2018;65(9):881–91. doi: 10.1507/endocrj.EJ18-0084 29937467

21. Di Domenico K, Wiltgen D, Nickel FJ, Magalhaes JA, Moraes RS, Spritzer PM. Cardiac autonomic modulation in polycystic ovary syndrome: does the phenotype matter? Fertility and Sterility. 2013;99(1):286–92. doi: 10.1016/j.fertnstert.2012.08.049 23025880

22. Colpani V, Oppermann K, Spritzer PM. Association between habitual physical activity and lower cardiovascular risk in premenopausal, perimenopausal, and postmenopausal women: a population-based study. Menopause. 2013;20(5):525–31. doi: 10.1097/GME.0b013e318271b388 23615643

23. Casanova G, dos Reis AM, Spritzer PM. Low-dose oral or non-oral hormone therapy: effects on C-reactive protein and atrial natriuretic peptide in menopause. Climacteric. 2015;18(1):86–93. doi: 10.3109/13697137.2014.940309 25017924

24. Silva TR, Spritzer PM. Skeletal muscle mass is associated with higher dietary protein intake and lower body fat in postmenopausal women: a cross-sectional study. Menopause. 2017;24(5):502–9. doi: 10.1097/GME.0000000000000793 27922938

25. Harlow SD, Gass M, Hall JE, Lobo R, Maki P, Rebar RW, et al. Executive summary of the Stages of Reproductive Aging Workshop +10: addressing the unfinished agenda of staging reproductive aging. Climacteric. 2012;15(2):105–14. doi: 10.3109/13697137.2011.650656 22338612

26. Alberti K, Eckel RH, Grundy SM, Zimmet PZ, Cleeman JI, Donato KA, et al. Harmonizing the Metabolic Syndrome A Joint Interim Statement of the International Diabetes Federation Task Force on Epidemiology and Prevention; National Heart, Lung, and Blood Institute; American Heart Association; World Heart Federation; International Atherosclerosis Society; and International Association for the Study of Obesity. Circulation. 2009;120(16):1640–5. doi: 10.1161/CIRCULATIONAHA.109.192644 19805654

27. Friedewald WT, Levy RI, Fredrickson DS. Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clinical Chemistry. 1972;18(6):499–502. 4337382

28. Wallace TM, Levy JC, Matthews DR. Use and abuse of HOMA modeling. Diabetes Care. 2004;27(6):1487–95. doi: 10.2337/diacare.27.6.1487 15161807

29. Powe CE, Ricciardi C, Berg AH, Erdenesanaa D, Collerone G, Ankers E, et al. Vitamin D-Binding Protein Modifies the Vitamin D-Bone Mineral Density Relationship. Journal of Bone and Mineral Research. 2011;26(7):1609–16. doi: 10.1002/jbmr.387 21416506

30. Vermeulen A, Verdonck L, Kaufman JM. A critical evaluation of simple methods for the estimation of free testosterone in serum. Journal of Clinical Endocrinology & Metabolism. 1999;84(10):3666–72.

31. Bikle DD, Gee E, Halloran B, Kowalski MA, Ryzen E, Haddad JG. Assessment of the free fraction of 25-hydroxyvitamin-d in serum and its regulation by albumin and the vitamin-d-binding protein. Journal of Clinical Endocrinology & Metabolism. 1986;63(4):954–9.

32. Miller SA, Dykes DD, Polesky HF. A simple salting out procedure for extracting DNA from human nucleated cells. Nucleic Acids Research. 1988;16(3):1215. doi: 10.1093/nar/16.3.1215 3344216

33. Almesri N, Das NS, Ali ME, Gumaa K, Giha HA. Independent association of polymorphisms in vitamin D binding protein (GC) and vitamin D receptor (VDR) genes with obesity and plasma 25OHD3 levels demonstrate sex dimorphism. Applied Physiology, Nutrition, and Metabolism. 2016;41(4):345–53. doi: 10.1139/apnm-2015-0284 26881316

34. Yao S, Hong CC, Bandera EV, Zhu Q, Liu S, Cheng TD, et al. Demographic, lifestyle, and genetic determinants of circulating concentrations of 25-hydroxyvitamin D and vitamin D-binding protein in African American and European American women. American Journal of Clinical Nutrition. 2017;105(6):1362–71. doi: 10.3945/ajcn.116.143248 28424184

35. Chupeerach C, Tungtrongchitr A, Phonrat B, Schweigert FJ, Tungtrongchitr R, Preutthipan S. Association of Thr420Lys polymorphism in DBP gene with fat-soluble vitamins and low radial bone mineral density in postmenopausal Thai women. Biomarkers in Medicine. 2012;6(1):103–8. doi: 10.2217/bmm.11.88 22296203

36. Abbas S, Nieters A, Linseisen J, Slanger T, Kropp S, Mutschelknauss EJ, et al. Vitamin D receptor gene polymorphisms and haplotypes and postmenopausal breast cancer risk. Breast Cancer Research. 2008;10(2):11.

37. Sinotte M, Diorio C, Berube S, Pollak M, Brisson J. Genetic polymorphisms of the vitamin D binding protein and plasma concentrations of 25-hydroxyvitamin D in premenopausal women. American Journal of Clinical Nutrition. 2009;89(2):634–40. doi: 10.3945/ajcn.2008.26445 19116321

38. Hatse S, Lambrechts D, Verstuyf A, Smeets A, Brouwers B, Vandorpe T, et al. Vitamin D status at breast cancer diagnosis: correlation with tumor characteristics, disease outcome, and genetic determinants of vitamin D insufficiency. Carcinogenesis. 2012;33(7):1319–26. doi: 10.1093/carcin/bgs187 22623648

39. Ashraf AP, Huisingh C, Alvarez JA, Wang X, Gower BA. Insulin resistance indices are inversely associated with vitamin D binding protein concentrations. J Clin Endocrinol Metab. 2014;99(1):178–83. doi: 10.1210/jc.2013-2452 24170105

40. Contreras-Manzano A, Villalpando S, García-Díaz C, Flores-Aldana M. Cardiovascular Risk Factors and Their Association with Vitamin D Deficiency in Mexican Women of Reproductive Age. Nutrients. 2019;11(6).

41. Giovinazzo S, Alibrandi A, Campennì A, Trimarchi F, Ruggeri RM. Correlation of cardio-metabolic parameters with vitamin D status in healthy premenopausal women. J Endocrinol Invest. 2017;40(12):1337–43. doi: 10.1007/s40618-017-0707-x 28616825

42. Schmitt EB, Nahas-Neto J, Bueloni-Dias F, Poloni PF, Orsatti CL, Petri Nahas EA. Vitamin D deficiency is associated with metabolic syndrome in postmenopausal women. Maturitas. 2018;107:97–102. doi: 10.1016/j.maturitas.2017.10.011 29169589

43. Naderpoor N, Shorakae S, Abell SK, Mousa A, Joham AE, Moran LJ, et al. Bioavailable and free 25-hydroxyvitamin D and vitamin D binding protein in polycystic ovary syndrome: Relationships with obesity and insulin resistance. J Steroid Biochem Mol Biol. 2018;177:209–15. doi: 10.1016/j.jsbmb.2017.07.012 28734987

44. Szymczak-Pajor I, Śliwińska A. Analysis of Association between Vitamin D Deficiency and Insulin Resistance. Nutrients. 2019;11(4).

45. Hirai M, Suzuki S, Hinokio Y, Hirai A, Chiba M, Akai H, et al. Variations in vitamin D-binding protein (group-specific component protein) are associated with fasting plasma insulin levels in Japanese with normal glucose tolerance. Journal of Clinical Endocrinology & Metabolism. 2000;85(5):1951–3.

46. Webb AR, Kline L, Holick MF. Influence of season and latitude on the cutaneous synthesis of vitamin-D3—exposure to winter sunlight in Boston and Edmonton will not promote vitamin-D3 synthesis in human-skin. Journal of Clinical Endocrinology & Metabolism. 1988;67(2):373–8.


Článek vyšel v časopise

PLOS One


2019 Číslo 12