Chemogenomic profiling to understand the antifungal action of a bioactive aurone compound


Autoři: Fatmah M. Alqahtani aff001;  Brock A. Arivett aff001;  Zachary E. Taylor aff002;  Scott T. Handy aff002;  Anthony L. Farone aff001;  Mary B. Farone aff001
Působiště autorů: Department of Biology, Middle Tennessee State University, Murfreesboro, Tennessee, United States of America aff001;  Department of Chemistry, Middle Tennessee State University, Murfreesboro, Tennessee, United States of America aff002
Vyšlo v časopise: PLoS ONE 14(12)
Kategorie: Research Article
doi: 10.1371/journal.pone.0226068

Souhrn

Every year, more than 250,000 invasive candidiasis infections are reported with 50,000 deaths worldwide. The limited number of antifungal agents necessitates the need for alternative antifungals with potential novel targets. The 2-benzylidenebenzofuran-3-(2H)-ones have become an attractive scaffold for antifungal drug design. This study aimed to determine the antifungal activity of a synthetic aurone compound and characterize its mode of action. Using the broth microdilution method, aurone SH1009 exhibited inhibition against C. albicans, including resistant isolates, as well as C. glabrata, and C. tropicalis with IC50 values of 4–29 μM. Cytotoxicity assays using human THP-1, HepG2, and A549 human cell lines showed selective toxicity toward fungal cells. The mode of action for SH1009 was characterized using chemical-genetic interaction via haploinsufficiency (HIP) and homozygous (HOP) profiling of a uniquely barcoded Saccharomyces cerevisiae mutant collection. Approximately 5300 mutants were competitively treated with SH1009 followed by DNA extraction, amplification of unique barcodes, and quantification of each mutant using multiplexed next-generation sequencing. Barcode post-sequencing analysis revealed 238 sensitive and resistant mutants that significantly (FDR P values ≤ 0.05) responded to aurone SH1009. The enrichment analysis of KEGG pathways and gene ontology demonstrated the cell cycle pathway as the most significantly enriched pathway along with DNA replication, cell division, actin cytoskeleton organization, and endocytosis. Phenotypic studies of these significantly enriched responses were validated in C. albicans. Flow cytometric analysis of SH1009-treated C. albicans revealed a significant accumulation of cells in G1 phase, indicating cell cycle arrest. Fluorescence microscopy detected abnormally interrupted actin dynamics, resulting in enlarged, unbudded cells. RT-qPCR confirmed the effects of SH1009 in differentially expressed cell cycle, actin polymerization, and signal transduction genes. These findings indicate the target of SH1009 as a cell cycle-dependent organization of the actin cytoskeleton, suggesting a novel mode of action of the aurone compound as an antifungal inhibitor.

Klíčová slova:

Actins – Antifungals – Antimicrobial resistance – Candida albicans – Cell cycle and cell division – Cytoskeleton – Saccharomyces cerevisiae – Endocytosis


Zdroje

1. Brown GD, Denning DW, Gow NAR, Levitz SM, Netea MG, White TC. Hidden killers: human fungal infections. Sci Transl Med. 2012;4(165):165rv13, 10 pp. doi: 10.1126/scitranslmed.3004404 23253612

2. Sardi JCO, Scorzoni L, Bernardi T, Fusco-Almeida AM, Giannini MJSM. Candida species: current epidemiology, pathogenicity, biofilm formation, natural antifungal products and new therapeutic options. J Med Microbiol. 2013;62(1):10–24.

3. Rajendra P. Candida albicans: Cellular and Molecular Biology. 2nd ed: Springer Nature; 2017. doi: 10.14715/cmb/2017.63.7.12 28838343

4. Kullberg BJ, Arendrup MC. Invasive candidiasis. N Engl J Med. 2015;373(15):1445–56. doi: 10.1056/NEJMra1315399 26444731

5. Liken HB, Kaufman DA. Candida. In: Cantey JB, editor. Neonatal Infections: Pathophysiology, Diagnosis, and Management. Cham: Springer International Publishing; 2018. p. 33–49.

6. Bondaryk M, KurzAtkowski W, Staniszewska M. Antifungal agents commonly used in the superficial and mucosal candidiasis treatment: mode of action and resistance development. Postepy Dermatol Alergol. 2013;30(5):293–301. doi: 10.5114/pdia.2013.38358 24353489

7. Prasad R, Nair R, Banerjee A. Emerging Mechanisms of Drug Resistance in Candida albicans. In: Sá-Correia I, editor. Yeasts in Biotechnology and Human Health: Physiological Genomic Approaches. Cham: Springer International Publishing; 2019. p. 135–53.

8. Wilson Leslie S, Reyes Carolina M, Stolpman M, Speckman J, Allen K, Beney J. The direct cost and incidence of systemic fungal infections. Value Health. 2002;5(1):26–34. doi: 10.1046/j.1524-4733.2002.51108.x 11873380

9. Wisplinghoff H, Ebbers J, Geurtz L, Stefanik D, Major Y, Edmond MB, et al. Nosocomial bloodstream infections due to Candida spp. in the USA: species distribution, clinical features and antifungal susceptibilities. Int J Antimicrob Agents. 2014;43(1):78–81. doi: 10.1016/j.ijantimicag.2013.09.005 24182454

10. Aqil F, Zahin M, Ahmad I, Owais M, Sajjad M, Khan A, et al. Antifungal Activity of Medicinal Plant Extractsand Phytocompounds: A Review: Springer-Verlag Berlin Heidelberg; 2010.

11. Mishra BB, Tiwari VK. Natural products: An evolving role in future drug discovery. European Journal of Medicinal Chemistry. 2011;46(10):4769–807. doi: 10.1016/j.ejmech.2011.07.057 21889825

12. Boumendjel A. Aurones: A subclass of flavones with promising biological potential. Current Medicinal Chemistry. 2003;10(23):2621–30. doi: 10.2174/0929867033456468 14529476

13. Morimoto M, Fukumoto H, Nozoe T, Hagiwara A, Komai K. Synthesis and insect antifeedant activity of aurones against Spodoptera litura larvae. Journal of Agricultural and Food Chemistry. 2007;55(3):700–5. doi: 10.1021/jf062562t 17263463

14. Kayser O, Kiderlen AF, Folkens U, Kokodziej H. In vitro leishmanicidal activity of aurones. Planta Medica. 1999;65(4):316–9. doi: 10.1055/s-1999-13993 10364835

15. Bandgar BP, Patil SA, Korbad BL, Biradar SC, Nile SN, Khobragade CN. Synthesis and biological evaluation of a novel series of 2,2-bisaminomethylated aurone analogs as anti-inflammatory and antimicrobial agents. Eur J Med Chem. 2010;45(7):3223–7. doi: 10.1016/j.ejmech.2010.03.045 20430485

16. Lawrence NJ, Rennison D, McGown AT, Hadfield JA. The total synthesis of an aurone isolated from Uvaria hamiltonii: Aurones and flavones as anticancer agents. Bioorganic & Medicinal Chemistry Letters. 2003;13(21):3759–63.

17. Huang W, Liu MZ, Li Y, Tan Y, Yang GF. Design, syntheses, and antitumor activity of novel chromone and aurone derivatives. Bioorganic & Medicinal Chemistry. 2007;15(15):5191–7.

18. Ferreira EO, Salvador MJ, Pral EMF, Alfieri SC, Ito IY, Dias DA. A new heptasubstituted (E)-aurone glucoside and other aromatic compounds of Gomphrena agrestis with biological activity. Zeitschrift Fur Naturforschung C-a Journal of Biosciences. 2004;59(7–8):499–505.

19. Pare PW, Dmitrieva N, Mabry TJ. PHYTOALEXIN AURONE INDUCED IN CEPHALOCEREUS-SENILIS LIQUID SUSPENSION-CULTURE. Phytochemistry. 1991;30(4):1133–5.

20. Lopez-Lazaro M, Martin-Cordero C, Toro MV, Ayuso MJ. Flavonoids as DNA topoisomerase I poisons. J Enzyme Inhib Med Chem. 2002;17(1):25–9. doi: 10.1080/14756360290011744 12365457

21. Sutton CL, Taylor ZE, Farone MB, Handy ST. Antifungal activity of substituted aurones. Bioorg Med Chem Lett. 2017;27(4):901–3. doi: 10.1016/j.bmcl.2017.01.012 28094180

22. CLSI. Reference method for broth dilution antifungal susceptibility testing of yeasts. CLSI standard M27 4th ed ed: Wayne, PA: Clinical and Laboratory Standards Institute; 2017.

23. Pfaller MA, Diekema DJ. Epidemiology of invasive candidiasis: a persistent public health problem. Clin Microbiol Rev. 2007;20(1):133–63. doi: 10.1128/CMR.00029-06 17223626

24. Silva S, Negri M, Henriques M, Oliveira R, Williams DW, Azeredo J. Candida glabrata, Candida parapsilosis and Candida tropicalis: biology, epidemiology, pathogenicity and antifungal resistance. FEMS Microbiol Rev. 2012;36(2):288–305. doi: 10.1111/j.1574-6976.2011.00278.x 21569057

25. Webb NE, Montefiori DC, Lee B. Dose-response curve slope helps predict therapeutic potency and breadth of HIV broadly neutralizing antibodies. Nat Commun. 2015;6:8443. doi: 10.1038/ncomms9443 26416571

26. Boncler M, Różalski M, Krajewska U, Podsędek A, Watala C. Comparison of PrestoBlue and MTT assays of cellular viability in the assessment of anti-proliferative effects of plant extracts on human endothelial cells. J Pharmacol Toxicol Methods. 2014;69(1):9–16. doi: 10.1016/j.vascn.2013.09.003 24103906

27. Hoon S, St. Onge RP, Giaever G, Nislow C. Yeast chemical genomics and drug discovery: an update. Trends Pharmacol Sci. 2008;29(10):499–504. doi: 10.1016/j.tips.2008.07.006 18755517

28. Chang M, Bellaoui M, Boone C, Brown GW. A genome-wide screen for methyl methanesulfonate-sensitive mutants reveals genes required for S phase progression in the presence of DNA damage. Proceedings of the National Academy of Sciences. 2002;99(26):16934–9.

29. Bindea G, Mlecnik B, Hackl H, Charoentong P, Tosolini M, Kirilovsky A, et al. ClueGO: a Cytoscape plug-in to decipher functionally grouped gene ontology and pathway annotation networks. Bioinformatics. 2009;25(8):1091–3. doi: 10.1093/bioinformatics/btp101 19237447

30. Harris MA, Clark J, Ireland A, Lomax J, Ashburner M, Foulger R, et al. The Gene Ontology (GO) database and informatics resource. Nucleic acids research. 2004;32(Database issue):D258–D61. doi: 10.1093/nar/gkh036 14681407

31. Bindea G, Galon J, Mlecnik B. CluePedia Cytoscape plugin: pathway insights using integrated experimental and in silico data. Bioinformatics. 2013;29(5):661–3. doi: 10.1093/bioinformatics/btt019 23325622

32. Ericson E, Hoon S, St. Onge RP, Giaever G, Nislow C. Exploring gene function and drug action using chemogenomic dosage assays. Methods Enzymol. 2010;470(Guide to Yeast Genetics (2nd Edition)):233–55.

33. Rosebrock AP. Analysis of the Budding Yeast Cell Cycle by Flow Cytometry. Cold Spring Harb Protoc. 2017;2017(1).

34. Slater ML, Sharrow SO, Gart JJ. Cell cycle of Saccharomycescerevisiae in populations growing at different rates. Proc Natl Acad Sci U S A. 1977;74(9):3850–4. doi: 10.1073/pnas.74.9.3850 333447

35. Heng YW, Koh CG. Actin cytoskeleton dynamics and the cell division cycle. Int J Biochem Cell Biol. 2010;42(10):1622–33. doi: 10.1016/j.biocel.2010.04.007 20412868

36. Park HO, Bi E. Central roles of small GTPases in the development of cell polarity in yeast and beyond. Microbiol Mol Biol Rev. 2007;71(1):48–96. doi: 10.1128/MMBR.00028-06 17347519

37. Mishra M, Huang J, Balasubramanian MK. The yeast actin cytoskeleton. FEMS Microbiology Reviews. 2014;38(2):213–27. doi: 10.1111/1574-6976.12064 24467403

38. Irazoqui JE, Lew DJ. Polarity establishment in yeast. Journal of Cell Science. 2004;117(11):2169–71.

39. Kopecká M, Yamaguchi M, Kawamoto S. Effects of the F-actin inhibitor latrunculin A on the budding yeast Saccharomyces cerevisiae. Microbiology. 2015;161(7):1348–55. doi: 10.1099/mic.0.000091 25858300

40. Ayscough KR. Coupling actin dynamics to the endocytic process in Saccharomyces cerevisiae. Protoplasma. 2005;226(1–2):81–8. doi: 10.1007/s00709-005-0107-5 16231104

41. Gourlay CW, Ayscough KR. Identification of an upstream regulatory pathway controlling actin-mediated apoptosis in yeast. J Cell Sci. 2005;118(Pt 10):2119–32. doi: 10.1242/jcs.02337 15855235

42. Kamińska J, Gajewska B, Hopper AK, Zoładek T. Rsp5p, a new link between the actin cytoskeleton and endocytosis in the yeast Saccharomyces cerevisiae. Mol Cell Biol. 2002;22(20):6946–8. doi: 10.1128/MCB.22.20.6946-6958.2002 12242276

43. Sekiya-Kawasaki M, Groen AC, Cope MJ, Kaksonen M, Watson HA, Zhang C, et al. Dynamic phosphoregulation of the cortical actin cytoskeleton and endocytic machinery revealed by real-time chemical genetic analysis. J Cell Biol. 2003;162(5):765–72. doi: 10.1083/jcb.200305077 12952930

44. Howell AS, Lew DJ. Morphogenesis and the cell cycle. Genetics. 2012;190(1):51–77. doi: 10.1534/genetics.111.128314 22219508

45. Ushinsky SC, Harcus D, Ash J, Dignard D, Marcil A, Morchhauser J, et al. CDC42 is required for polarized growth in human pathogen Candida albicans. Eukaryot Cell. 2002;1(1):95–104. doi: 10.1128/EC.1.1.95-104.2002 12455975

46. Zheng X, Wang Y. Hgc1, a novel hypha-specific G1 cyclin-related protein regulates Candida albicans hyphal morphogenesis. EMBO J. 2004;23(8):1845–56. doi: 10.1038/sj.emboj.7600195 15071502

47. Wang Y. Hgc1-Cdc28-how much does a single protein kinase do in the regulation of hyphal development in Candida albicans? J Microbiol. 2016;54(3):170–7. doi: 10.1007/s12275-016-5550-9 26920877

48. Zheng XD, Lee RT, Wang YM, Lin QS, Wang Y. Phosphorylation of Rga2, a Cdc42 GAP, by CDK/Hgc1 is crucial for Candida albicans hyphal growth. EMBO J. 2007;26(16):3760–9. doi: 10.1038/sj.emboj.7601814 17673907

49. Tye BK. MCM proteins in DNA replication. Annu Rev Biochem. 1999;68:649–86. doi: 10.1146/annurev.biochem.68.1.649 10872463

50. Enserink JM, Kolodner RD. An overview of Cdk1-controlled targets and processes. Cell Div. 2010;5:11. doi: 10.1186/1747-1028-5-11 20465793

51. Saraste M R. Sibbald P, Wittinghofer A. The P-loop—a common motif in ATP- and GTP-binding proteins. Trends in Biochemical Sciences. 1990;15(11):430–4. doi: 10.1016/0968-0004(90)90281-f 2126155

52. Toda T, Uno I, Ishikawa T, Powers S, Kataoka T, Broek D, et al. In yeast, RAS proteins are controlling elements of adenylate cyclase. Cell. 1985;40(1):27–36. doi: 10.1016/0092-8674(85)90305-8 2981630

53. Weeks G, Spiegelman GB. Roles played by Ras subfamily proteins in the cell and developmental biology of microorganisms. Cell Signal. 2003;15(10):901–9. doi: 10.1016/s0898-6568(03)00073-1 12873703

54. Zhu Y, Fang HM, Wang YM, Zeng GS, Zheng XD, Wang Y. Ras1 and Ras2 play antagonistic roles in regulating cellular cAMP level, stationary-phase entry and stress response in Candida albicans. Mol Microbiol. 2009;74(4):862–75. doi: 10.1111/j.1365-2958.2009.06898.x 19788542

55. deHart AK, Schnell JD, Allen DA, Tsai JY, Hicke L. Receptor internalization in yeast requires the Tor2-Rho1 signaling pathway. Mol Biol Cell. 2003;14(11):4676–84. doi: 10.1091/mbc.E03-05-0323 14593073

56. Schmidt A, Kunz J, Hall MN. TOR2 is required for organization of the actin cytoskeleton in yeast. Proc Natl Acad Sci U S A. 1996;93(24):13780–5. doi: 10.1073/pnas.93.24.13780 8943012

57. Ho H-L, Shiau Y-S, Chen M-Y. Saccharomyces cerevisiaeTSC11/AVO3 participates in regulating cell integrity and functionally interacts with components of the Tor2 complex. Curr Genet. 2005;47(5):273–88. doi: 10.1007/s00294-005-0570-8 15809876

58. Grahammer F, Helmstaedter M, Osenberg D, Kuhne L, Kretz O, Wanner N, et al. mTOR Regulates Endocytosis and Nutrient Transport in Proximal Tubular Cells. J Am Soc Nephrol. 2017;28(1):230–41. doi: 10.1681/ASN.2015111224 27297946

59. Hietakangas V, Cohen SM. TOR complex 2 is needed for cell cycle progression and anchorage-independent growth of MCF7 and PC3 tumor cells. BMC Cancer. 2008;8:No pp given.

60. Heese-Peck A, Pichler H, Zanolari B, Watanabe R, Daum G, Riezman H. Multiple functions of sterols in yeast endocytosis. Mol Biol Cell. 2002;13(8):2664–80. doi: 10.1091/mbc.E02-04-0186 12181337

61. Bahn YS, Molenda M, Staab JF, Lyman CA, Gordon LJ, Sundstrom P. Genome-wide transcriptional profiling of the cyclic AMP-dependent signaling pathway during morphogenic transitions of Candida albicans. Eukaryot Cell. 2007;6(12):2376–90. doi: 10.1128/EC.00318-07 17951520

62. Chaillot J, Cook MA, Corbeil J, Sellam A. Genome-Wide Screen for Haploinsufficient Cell Size Genes in the Opportunistic Yeast. G3 (Bethesda). 2017;7(2):355–60.

63. Thapa M, Bommakanti A, Shamsuzzaman M, Gregory B, Samsel L, Zengel JM, et al. Repressed synthesis of ribosomal proteins generates protein-specific cell cycle and morphological phenotypes. Mol Biol Cell. 2013;24(23):3620–33. doi: 10.1091/mbc.E13-02-0097 24109599

64. Franz R, Kelly SL, Lamb DC, Kelly DE, Ruhnke M, Morschhäuser J. Multiple molecular mechanisms contribute to a stepwise development of fluconazole resistance in clinical Candida albicans strains. Antimicrob Agents Chemother. 1998;42(12):3065–72. 9835492

65. Coste A, Ferrari S, Sanglard D. Antifungal drug resistance mechanisms in fungal pathogens from the perspective of transcriptional gene regulation. FEMS Yeast Research. 2009;9(7):1029–50. doi: 10.1111/j.1567-1364.2009.00578.x 19799636

66. Sasse C, Schillig R, Dierolf F, Weyler M, Schneider S, Mogavero S, et al. The transcription factor Ndt80 does not contribute to Mrr1-, Tac1-, and Upc2-mediated fluconazole resistance in Candida albicans. PloS one. 2011;6(9):e25623-e.

67. Schubert S, Barker KS, Znaidi S, Schneider S, Dierolf F, Dunkel N, et al. Regulation of efflux pump expression and drug resistance by the transcription factors Mrr1, Upc2, and Cap1 in Candida albicans. Antimicrobial agents and chemotherapy. 2011;55(5):2212–23. doi: 10.1128/AAC.01343-10 21402859

68. Pais P, Galocha M, Viana R, Cavalheiro M, Pereira D, Teixeira MC. Microevolution of the pathogenic yeasts Candida albicans and Candida glabrata during antifungal therapy and host infection. Microbial cell (Graz, Austria). 2019;6(3):142–59.

69. Ford CB, Funt JM, Abbey D, Issi L, Guiducci C, Martinez DA, et al. The evolution of drug resistance in clinical isolates of Candida albicans. eLife. 2015;4:e00662-e.

70. Boumendjel A, Beney C, Deka N, Mariotte AM, Lawson MA, Trompier D, et al. 4-Hydroxy-6-methoxyaurones with high-affinity binding to cytosolic domain of P-glycoprotein. Chem Pharm Bull (Tokyo). 2002;50(6):854–6.

71. Sim HM, Loh KY, Yeo WK, Lee CY, Go ML. Aurones as Modulators of ABCG2 and ABCB1: Synthesis and Structure–Activity Relationships. ChemMedChem. 2011;6(4):713–24. doi: 10.1002/cmdc.201000520 21302361

72. Pradines B. P-Glycoprotein-Like Transporters in Leishmania: A Search for Reversal Agents: Consequences, Molecular Mechanisms and Possible Treatments. 2018. p. 319–40.

73. Ryley JF, Wilson RG, Barrett-Bee KJ. Azole resistance in Candida albicans. Sabouraudia. 1984;22(1):53–63. 6322363

74. Basso V, Garcia A, Q. Tran D, Schaal J, Tran P, Ngole D, et al. Fungicidal Potency and Mechanisms of -Defensins against Multidrug-Resistant Candida Species2018. AAC.00111-18 p.

75. Jensen RH, Astvad KMT, Silva LV, Sanglard D, Jørgensen R, Nielsen KF, et al. Stepwise emergence of azole, echinocandin and amphotericin B multidrug resistance in vivo in Candida albicans orchestrated by multiple genetic alterations. The Journal of antimicrobial chemotherapy. 2015;70(9):2551–5. doi: 10.1093/jac/dkv140 26017038

76. Ferrari S, Ischer F, Calabrese D, Posteraro B, Sanguinetti M, Fadda G, et al. Gain of function mutations in CgPDR1 of Candida glabrata not only mediate antifungal resistance but also enhance virulence. PLoS pathogens. 2009;5(1):e1000268-e.

77. Pais P, Galocha M, Teixeira MC. Genome-Wide Response to Drugs and Stress in the Pathogenic Yeast Candida glabrata. In: Sá-Correia I, editor. Yeasts in Biotechnology and Human Health: Physiological Genomic Approaches. Cham: Springer International Publishing; 2019. p. 155–93.

78. Pfaller MA, Sheehan DJ, Rex JH. Determination of fungicidal activities against yeasts and molds: lessons learned from bactericidal testing and the need for standardization. Clin Microbiol Rev. 2004;17(2):268–80. doi: 10.1128/CMR.17.2.268-280.2004 15084501

79. Giaever G, Chu AM, Ni L, Connelly C, Riles L, Veronneau S, et al. Functional profiling of the Saccharomyces cerevisiae genome. Nature (London, U K). 2002;418(6896):387–91.

80. Parsons AB, Brost RL, Ding H, Li Z, Zhang C, Sheikh B, et al. Integration of chemical-genetic and genetic interaction data links bioactive compounds to cellular target pathways. Nat Biotechnol. 2004;22(1):62–9. doi: 10.1038/nbt919 14661025

81. Hoepfner D, Helliwell SB, Sadlish H, Schuierer S, Filipuzzi I, Brachat S, et al. High-resolution chemical dissection of a model eukaryote reveals targets, pathways and gene functions. Microbiol Res. 2014;169(2–3):107–20. doi: 10.1016/j.micres.2013.11.004 24360837

82. Lee AY, St. Onge RP, Proctor MJ, Wallace IM, Nile AH, Spagnuolo PA, et al. Mapping the Cellular Response to Small Molecules Using Chemogenomic Fitness Signatures. Science (Washington, DC, U S). 2014;344(6180):208–11.

83. Alsayari A, Muhsinah AB, Hassan MZ, Ahsan MJ, Alshehri JA, Begum N. Aurone: A biologically attractive scaffold as anticancer agent. Eur J Med Chem. 2019;166:417–31. doi: 10.1016/j.ejmech.2019.01.078 30739824

84. Pierce SE, Davis RW, Nislow C, Giaever G. Genome-wide analysis of barcoded Saccharomyces cerevisiae gene-deletion mutants in pooled cultures. Nat Protoc. 2007;2(11):2958–74. doi: 10.1038/nprot.2007.427 18007632

85. Xiao Y, Wang Y. Global discovery of protein kinases and other nucleotide-binding proteins by mass spectrometry. Mass Spectrom Rev. 2016;35(5):601–19. doi: 10.1002/mas.21447 25376990

86. Xiao Y, Guo L, Jiang X, Wang Y. Proteome-wide discovery and characterizations of nucleotide-binding proteins with affinity-labeled chemical probes. Anal Chem. 2013;85(6):3198–206. doi: 10.1021/ac303383c 23413923

87. Jakobi R, Traugh JA. Analysis of the ATP/GTP binding site of casein kinase II by site-directed mutagenesis. Physiol Chem Phys Med NMR. 1995;27(4):293–301. 8768785

88. Sicheri F, Moarefi I, Kuriyan J. Crystal structure of the Src family tyrosine kinase Hck. Nature. 1997;385(6617):602–9. doi: 10.1038/385602a0 9024658

89. Suryadinata R, Sadowski M, Sarcevic B. Control of cell cycle progression by phosphorylation of cyclin-dependent kinase (CDK) substrates. Bioscience Reports. 2010;30(4):243–55. doi: 10.1042/BSR20090171 20337599

90. Cote P, Hogues H, Whiteway M. Transcriptional analysis of the Candida albicans cell cycle. Mol Biol Cell. 2009;20(14):3363–73. doi: 10.1091/mbc.E09-03-0210 19477921

91. Song Y, Cheon SA, Lee KE, Lee SY, Lee BK, Oh DB, et al. Role of the RAM network in cell polarity and hyphal morphogenesis in Candida albicans. Mol Biol Cell. 2008;19(12):5456–77. doi: 10.1091/mbc.E08-03-0272 18843050

92. Klepser ME, Ernst EJ, Lewis RE, Ernst ME, Pfaller MA. Influence of test conditions on antifungal time-kill curve results: proposal for standardized methods. Antimicrob Agents Chemother. 1998;42(5):1207–12. 9593151

93. Piotrowski JS, Simpkins SW, Li SC, Deshpande R, McIlwain SJ, Ong IM, et al. Chemical Genomic Profiling via Barcode Sequencing to Predict Compound Mode of Action. Methods Mol Biol (N Y, NY, U S). 2015;1263(Chemical Biology):299–318.

94. Tisdall J. Beginning Perl for Bioinformatics. First Edition ed: O’REILLY; 2001.

95. Helliwell SB, Howald I, Barbet N, Hall MN. TOR2 is part of two related signaling pathways coordinating cell growth in Saccharomyces cerevisiae. Genetics. 1998;148(1):99–112. 9475724

96. Schmittgen TD, Livak KJ. Analyzing real-time PCR data by the comparative CT method. Nat Protoc. 2008;3(6):1101–8. doi: 10.1038/nprot.2008.73 18546601


Článek vyšel v časopise

PLOS One


2019 Číslo 12