Antiphagocytic protein 1 increases the susceptibility of Cryptococcus neoformans to amphotericin B and fluconazole


Autoři: Muhammad Ghaffar aff001;  Cody Orr aff001;  Ginny Webb aff001
Působiště autorů: Division of Natural Sciences and Engineering, University of South Carolina Upstate, Spartanburg, South Carolina, United States of America aff001
Vyšlo v časopise: PLoS ONE 14(12)
Kategorie: Research Article
doi: 10.1371/journal.pone.0225701

Souhrn

Cryptococcus neoformans is a facultative intracellular pathogen responsible for the most common cause of fungal meningioencephalitis, occurring primarily in immunocompromised individuals. Antiphagocytic protein 1 (App1) is a virulence factor produced by C. neoformans that inhibits phagocytosis of the yeast by host macrophages. Treatment of cryptococcosis includes amphotericin B, fluconazole, and flucytosine. Virulence factors have been shown to affect the susceptibility of the pathogen to antifungal drugs. In this study, we aimed to examine the relationship between App1 and antifungal drugs. We found that short-term exposure to amphotericin B downregulates APP1 expression while exposure to fluconazole upregulates APP1. In addition, App1 was found to increase the susceptibility of the yeast to amphotericin B and fluconazole. This study provides evidence of an intricate relationship between App1 and antifungal drugs.

Klíčová slova:

Amphotericin – Antifungals – Cryptococcus neoformans – Drug therapy – Fungal pathogens – Gene expression – Phagocytosis – Virulence factors


Zdroje

1. Song M-H, Lee J-W, Kim MS, Yoon J-K, White TC, Floyd A, et al. A Flucytosine-Responsive Mbp1/Swi4-Like Protein, Mbs1, Plays Pleiotropic Roles in Antifungal Drug Resistance, Stress Response, and Virulence of Cryptococcus neoformans. Eukaryotic Cell. 2012;11(1):53–67. doi: 10.1128/EC.05236-11 22080454

2. Casadevall A, Perfect J. Cryptococcus neoformans. Washington DC: American Society of Microbiology. 1998.

3. Rajasingham R, Smith RM, Park BJ, Jarvis JN, Govender NP, Chiller TM, et al. Global burden of disease of HIV-associated cryptococcal meningitis: an updated analysis. Lancet Infect Dis. 2017;17(8):873–81. Epub 2017/05/05. doi: 10.1016/S1473-3099(17)30243-8 28483415

4. Chayakulkeeree M, Perfect JR. Cryptococcosis. Infect Dis Clin N Am. 2006;20:507–44.

5. Perfect JR, Dismukes WE, Dromer F, Goldman DL, Graybill JR, Hamill RJ, et al. Clinical Practice Guidelines for the Management of Cryptococcal Disease: 2010 Update by the Infectious Diseases Society of America. Clinical Infectious Diseases. 2010;50(3):291–322. doi: 10.1086/649858 20047480

6. Voelz K, Lammas DA, May RC. Cytokine signaling regulates the outcome of intracellular macrophage parasitism by Cryptococcus neoformans. Infection and Immunity. 2009;77(8):3450–7. doi: 10.1128/IAI.00297-09 19487474

7. Bicanic T, Wood R, Meintjes G, Rebe K, Brouwer A, Loyse A, et al. High-dose amphotericin B with flucytosine for the treatment of cryptococcal meningitis in HIV-infected patients: a randomized trial. Clin Infect Dis. 2008;47(1):123–30. doi: 10.1086/588792 18505387.

8. Peng CA, Gaertner AAE, Henriquez SA, Fang D, Colon-Reyes RJ, Brumaghim JL, et al. Fluconazole induces ROS in Cryptococcus neoformans and contributes to DNA damage in vitro. PLoS One. 2018;13(12):e0208471. Epub 2018/12/07. doi: 10.1371/journal.pone.0208471 30532246

9. Odds FC, Brown AJ, Gow NA. Antifungal agents: mechanisms of action. Trends Microbiol. 2003;11(6):272–9. doi: 10.1016/s0966-842x(03)00117-3 12823944.

10. Carrillo-Muñoz AJ, Giusiano G, Ezkurra PA, Quindós G. Antifungal agents: mode of action in yeast cells. Rev Esp Quimioter. 2006;19(2):130–9. 16964330.

11. Stano P, Williams V, Villani M, Cymbalyuk ES, Qureshi A, Huang Y, et al. App1: An Antiphagocytic Protein That Binds to Complement Receptors 3 and 2. The Journal of Immunology. 2009;182(1):84–91. doi: 10.4049/jimmunol.182.1.84 19109138

12. Luberto C, Martinez-Mariño B, Taraskiewicz D, Bolaños B, Chitano P, Toffaletti DL, et al. Identification of App1 as a regulator of phagocytosis and virulence of Cryptococcus neoformans. J Clin Invest. 2003;112(7):1080–94. doi: 10.1172/JCI18309 14523045

13. Mare L, Iatta R, Montagna MT, Luberto C, Del Poeta M. APP1 transcription is regulated by inositol-phosphorylceramide synthase 1-diacylglycerol pathway and is controlled by ATF2 transcription factor in Cryptococcus neoformans. J Biol Chem. 2005;280(43):36055–64. doi: 10.1074/jbc.M507285200 16129666.

14. Tommasino N, Villani M, Qureshi A, Henry J, Luberto C, Del Poeta M. Atf2 transcription factor binds to the APP1 promoter in Cryptococcus neoformans: stimulatory effect of diacylglycerol. Eukaryot Cell. 2008;7(2):294–301. doi: 10.1128/EC.00315-07 18083832

15. Williams V, Poeta M. Role of glucose in the expression of Cryptococcus neoformans antiphagoctyic protein 1, APP1. Eukaryotic cell. 2011;10(3):293–301. doi: 10.1128/EC.00252-10 21239626

16. Florio AR, Ferrari S, De Carolis E, Torelli R, Fadda G, Sanguinetti M, et al. Genome-wide expression profiling of the response to short-term exposure to fluconazole in Cryptococcus neoformans serotype A. BMC Microbiology. 2011;11.

17. Bang S, Kwon H, Hwang HS, Park KD, Kim SU, Bahn YS. 9-O-butyl-13-(4-isopropylbenzyl)berberine, KR-72, is a potent antifungal agent that inhibits the growth of Cryptococcus neoformans by regulating gene expression. PLoS One. 2014;9(10):e109863. Epub 2014/10/10. doi: 10.1371/journal.pone.0109863 25302492

18. van Duin D, Casadevall A, Nosanchuk JD. Melanization of Cryptococcus neoformans and Histoplasma capsulatum reduces their susceptibilities to amphotericin B and caspofungin. Antimicrob Agents Chemother. 2002;46(11):3394–400. doi: 10.1128/AAC.46.11.3394-3400.2002 12384341

19. Wang Y, Casadevall A. Growth of Cryptococcus neoformans in presence of L-dopa decreases its susceptibility to amphotericin B. Antimicrob Agents Chemother. 1994;38(11):2648–50. doi: 10.1128/aac.38.11.2648 7872761

20. Ikeda R, Sugita T, Jacobson ES, Shinoda T. Effects of melanin upon susceptibility of Cryptococcus to antifungals. Microbiol Immunol. 2003;47(4):271–7. doi: 10.1111/j.1348-0421.2003.tb03395.x 12801064.

21. Zaragoza O, Mihu C, Casadevall A, Nosanchuk JD. Effect of amphotericin B on capsule and cell size in Cryptococcus neoformans during murine infection. Antimicrob Agents Chemother. 2005;49(10):4358–61. doi: 10.1128/AAC.49.10.4358-4361.2005 16189121

22. Chang M, Sionov E, Khanal Lamichhane A, Kwon-Chung KJ, Chang YC. Roles of Three Cryptococcus neoformans and Cryptococcus gattii Efflux Pump-Coding Genes in Response to Drug Treatment. Antimicrob Agents Chemother. 2018;62(4). Epub 2018/03/27. doi: 10.1128/AAC.01751-17 29378705

23. Sionov E, Chang YC, Garraffo HM, Dolan MA, Ghannoum MA, Kwon-Chung KJ. Identification of a Cryptococcus neoformans cytochrome P450 lanosterol 14α-demethylase (Erg11) residue critical for differential susceptibility between fluconazole/voriconazole and itraconazole/posaconazole. Antimicrob Agents Chemother. 2012;56(3):1162–9. Epub 2011/12/12. doi: 10.1128/AAC.05502-11 22155829

24. Sanguinetti M, Posteraro B, La Sorda M, Torelli R, Fiori B, Santangelo R, et al. Role of AFR1, an ABC transporter-encoding gene, in the in vivo response to fluconazole and virulence of Cryptococcus neoformans. Infect Immun. 2006;74(2):1352–9. doi: 10.1128/IAI.74.2.1352-1359.2006 16428784

25. Basso LR, Gast CE, Bruzual I, Wong B. Identification and properties of plasma membrane azole efflux pumps from the pathogenic fungi Cryptococcus gattii and Cryptococcus neoformans. J Antimicrob Chemother. 2015;70(5):1396–407. Epub 2015/01/27. doi: 10.1093/jac/dku554 25630649

26. Yang ML, Uhrig J, Vu K, Singapuri A, Dennis M, Gelli A, et al. Fluconazole Susceptibility in Cryptococcus gattii Is Dependent on the ABC Transporter Pdr11. Antimicrob Agents Chemother. 2015;60(3):1202–7. Epub 2015/12/07. doi: 10.1128/AAC.01777-15 26643330

27. Coelho C, Casadevall A. Cryptococcal therapies and drug targets: the old, the new and the promising. Cell Microbiol. 2016;18(6):792–9. Epub 2016/04/08. doi: 10.1111/cmi.12590 26990050


Článek vyšel v časopise

PLOS One


2019 Číslo 12