Neutrophils remain detrimentally active in hydroxyurea-treated patients with sickle cell disease


Autoři: Emilia Alina Barbu aff001;  Venina M. Dominical aff002;  Laurel Mendelsohn aff001;  Swee Lay Thein aff001
Působiště autorů: Sickle Cell Branch, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD, United States of America aff001;  Flow Cytometry Core Facility, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD, United States of America aff002
Vyšlo v časopise: PLoS ONE 14(12)
Kategorie: Research Article
doi: 10.1371/journal.pone.0226583

Souhrn

Neutrophilia is a feature of sickle cell disease (SCD) that has been consistently correlated with clinical severity and has been shown to remain highly activated even at steady state. In addition to induction of fetal hemoglobin (HbF), hydroxyurea (HU) leads to reduction in neutrophil count and their adhesion properties, which contributes to the clinical efficacy of HU in SCD. Although HU reduces the frequency and severity of acute vaso-occlusive crises (VOCs) and chest syndrome, HU therapy does not abolish these acute clinical events. In this study we investigated whether neutrophils in SCD patients whilst on HU therapy retained features of detrimental pro-inflammatory activity. Freshly isolated neutrophils from SCD patients on HU therapy at steady state and from ethnic-matched healthy controls were evaluated ex vivo for their degranulation response and production of neutrophil extracellular traps (NETs). Unstimulated SCD patient neutrophils already produced NETs within 30 minutes, compared to none for healthy neutrophils, and by 4 hours, these neutrophils produced significantly more NETs than the control neutrophils (P = 0.0079**). Higher numbers of neutrophils from SCD patients also showed higher degree of degranulation-related intracellular features compared to healthy neutrophils, including rough-textured cellular membranes (P = 0.03*), double-positivity for F-Actin and CD63 (P = 0.02*) and re-located CD63 within cytoplasm more efficiently than their healthy counterparts (P = 0.02*). The neutrophils from SCD donors released more myeloperoxidase (P = 0.02*) in the absence of any trigger. Our data showed that neutrophils from patients with SCD at steady state remained active during hydroxyurea treatment and are likely to be able to contribute to the SCD pro-inflammatory environment.

Klíčová slova:

Cell membranes – DAPI staining – Flow cytometry – Fluorescence microscopy – Neutrophils – Nuclear staining – Sickle cell disease – Cell degranulation


Zdroje

1. Williams TN, Thein SL. Sickle Cell Anemia and Its Phenotypes. Annual review of genomics and human genetics. 2018;19:113–47. Epub 2018/04/12. doi: 10.1146/annurev-genom-083117-021320 29641911.

2. Zhang D, Xu C, Manwani D, Frenette PS. Neutrophils, platelets, and inflammatory pathways at the nexus of sickle cell disease pathophysiology. Blood. 2016;127(7):801–9. Epub 2016/01/14. doi: 10.1182/blood-2015-09-618538 26758915; PubMed Central PMCID: PMC4760086.

3. Ahmed AE, Ali YZ, Al-Suliman AM, Albagshi JM, Al Salamah M, Elsayid M, et al. The prevalence of abnormal leukocyte count, and its predisposing factors, in patients with sickle cell disease in Saudi Arabia. J Blood Med. 2017;8:185–91. Epub 2017/11/11. doi: 10.2147/JBM.S148463 29123434; PubMed Central PMCID: PMC5661844.

4. Charache S, Barton FB, Moore RD, Terrin ML, Steinberg MH, Dover GJ, et al. Hydroxyurea and sickle cell anemia. Clinical utility of a myelosuppressive "switching" agent. The Multicenter Study of Hydroxyurea in Sickle Cell Anemia. Medicine. 1996;75(6):300–26. doi: 10.1097/00005792-199611000-00002 8982148.

5. Benkerrou M, Delarche C, Brahimi L, Fay M, Vilmer E, Elion J, et al. Hydroxyurea corrects the dysregulated L-selectin expression and increased H(2)O(2) production of polymorphonuclear neutrophils from patients with sickle cell anemia. Blood. 2002;99(7):2297–303. doi: 10.1182/blood.v99.7.2297 11895759.

6. Manwani D, Frenette PS. Vaso-occlusion in sickle cell disease: pathophysiology and novel targeted therapies. Blood. 2013. Epub 2013/09/21. doi: blood-2013-05-498311 [pii] doi: 10.1182/blood-2013-05-498311 24052549.

7. Castanheira FVS, Kubes P. Neutrophils and NETs in modulating acute and chronic inflammation. Blood. 2019;133(20):2178–85. Epub 2019/03/23. doi: 10.1182/blood-2018-11-844530 30898862.

8. Jung HS, Gu J, Kim JE, Nam Y, Song JW, Kim HK. Cancer cell-induced neutrophil extracellular traps promote both hypercoagulability and cancer progression. PLoS One. 2019;14(4):e0216055. Epub 2019/04/30. doi: 10.1371/journal.pone.0216055 31034495; PubMed Central PMCID: PMC6488070.

9. McIlroy DJ, Jarnicki AG, Au GG, Lott N, Smith DW, Hansbro PM, et al. Mitochondrial DNA neutrophil extracellular traps are formed after trauma and subsequent surgery. J Crit Care. 2014;29(6):1133 e1-5. Epub 2014/08/17. doi: 10.1016/j.jcrc.2014.07.013 25128442.

10. Hoenderdos K, Lodge KM, Hirst RA, Chen C, Palazzo SG, Emerenciana A, et al. Hypoxia upregulates neutrophil degranulation and potential for tissue injury. Thorax. 2016;71(11):1030–8. Epub 2016/09/02. doi: 10.1136/thoraxjnl-2015-207604 27581620; PubMed Central PMCID: PMC5099189.

11. Wang J. Neutrophils in tissue injury and repair. Cell Tissue Res. 2018;371(3):531–9. Epub 2018/02/01. doi: 10.1007/s00441-017-2785-7 29383445; PubMed Central PMCID: PMC5820392.

12. Wilgus TA, Roy S, McDaniel JC. Neutrophils and Wound Repair: Positive Actions and Negative Reactions. Adv Wound Care (New Rochelle). 2013;2(7):379–88. Epub 2014/02/15. doi: 10.1089/wound.2012.0383 24527354; PubMed Central PMCID: PMC3763227.

13. Opasawatchai A, Amornsupawat P, Jiravejchakul N, Chan-In W, Spoerk NJ, Manopwisedjaroen K, et al. Neutrophil Activation and Early Features of NET Formation Are Associated With Dengue Virus Infection in Human. Front Immunol. 2018;9:3007. Epub 2019/01/29. doi: 10.3389/fimmu.2018.03007 30687301; PubMed Central PMCID: PMC6336714.

14. Mollinedo F. Neutrophil Degranulation, Plasticity, and Cancer Metastasis. Trends Immunol. 2019;40(3):228–42. Epub 2019/02/20. doi: 10.1016/j.it.2019.01.006 30777721.

15. Lard LR, Mul FP, de Haas M, Roos D, Duits AJ. Neutrophil activation in sickle cell disease. J Leukoc Biol. 1999;66(3):411–5. doi: 10.1002/jlb.66.3.411 10496310

16. Chen G, Zhang D, Fuchs TA, Manwani D, Wagner DD, Frenette PS. Heme-induced neutrophil extracellular traps contribute to the pathogenesis of sickle cell disease. Blood. 2014;123(24):3818–27. Epub 2014/03/13. doi: 10.1182/blood-2013-10-529982 24620350; PubMed Central PMCID: PMC4055928.

17. Kahlenberg JM, Carmona-Rivera C, Smith CK, Kaplan MJ. Neutrophil extracellular trap-associated protein activation of the NLRP3 inflammasome is enhanced in lupus macrophages. J Immunol. 2013;190(3):1217–26. Epub 2012/12/26. doi: 10.4049/jimmunol.1202388 23267025; PubMed Central PMCID: PMC3552129.

18. Lacy P. Mechanisms of degranulation in neutrophils. Allergy Asthma Clin Immunol. 2006;2(3):98–108. Epub 2006/09/15. doi: 10.1186/1710-1492-2-3-98 20525154; PubMed Central PMCID: PMC2876182.

19. Sheshachalam A, Srivastava N, Mitchell T, Lacy P, Eitzen G. Granule protein processing and regulated secretion in neutrophils. Front Immunol. 2014;5:448. Epub 2014/10/07. doi: 10.3389/fimmu.2014.00448 25285096; PubMed Central PMCID: PMC4168738.

20. McDonald B, Davis RP, Kim SJ, Tse M, Esmon CT, Kolaczkowska E, et al. Platelets and neutrophil extracellular traps collaborate to promote intravascular coagulation during sepsis in mice. Blood. 2017;129(10):1357–67. Epub 2017/01/12. doi: 10.1182/blood-2016-09-741298 28073784; PubMed Central PMCID: PMC5345735.

21. Ambale-Venkatesh B, Yang X, Wu CO, Liu K, Hundley WG, McClelland R, et al. Cardiovascular Event Prediction by Machine Learning: The Multi-Ethnic Study of Atherosclerosis. Circulation research. 2017;121(9):1092–101. Epub 2017/08/11. doi: 10.1161/CIRCRESAHA.117.311312 28794054; PubMed Central PMCID: PMC5640485.

22. Andrews RK, Arthur JF, Gardiner EE. Neutrophil extracellular traps (NETs) and the role of platelets in infection. Thrombosis and haemostasis. 2014;112(4):659–65. Epub 2014/09/30. doi: 10.1160/TH14-05-0455 25265341.

23. Elaskalani O, Abdol Razak NB, Metharom P. Neutrophil extracellular traps induce aggregation of washed human platelets independently of extracellular DNA and histones. Cell Commun Signal. 2018;16(1):24. Epub 2018/05/31. doi: 10.1186/s12964-018-0235-0 29843771; PubMed Central PMCID: PMC5975482.

24. Sur Chowdhury C, Giaglis S, Walker UA, Buser A, Hahn S, Hasler P. Enhanced neutrophil extracellular trap generation in rheumatoid arthritis: analysis of underlying signal transduction pathways and potential diagnostic utility. Arthritis Res Ther. 2014;16(3):R122. Epub 2014/06/15. doi: 10.1186/ar4579 24928093; PubMed Central PMCID: PMC4229860.

25. Lood C, Blanco LP, Purmalek MM, Carmona-Rivera C, De Ravin SS, Smith CK, et al. Neutrophil extracellular traps enriched in oxidized mitochondrial DNA are interferogenic and contribute to lupus-like disease. Nature medicine. 2016;22(2):146–53. Epub 2016/01/19. doi: 10.1038/nm.4027 26779811; PubMed Central PMCID: PMC4742415.

26. Clark SR, Ma AC, Tavener SA, McDonald B, Goodarzi Z, Kelly MM, et al. Platelet TLR4 activates neutrophil extracellular traps to ensnare bacteria in septic blood. Nature medicine. 2007;13(4):463–9. Epub 2007/03/27. doi: 10.1038/nm1565 17384648.

27. Caudrillier A, Kessenbrock K, Gilliss BM, Nguyen JX, Marques MB, Monestier M, et al. Platelets induce neutrophil extracellular traps in transfusion-related acute lung injury. The Journal of clinical investigation. 2012;122(7):2661–71. Epub 2012/06/12. doi: 10.1172/JCI61303 22684106; PubMed Central PMCID: PMC3386815.

28. Kambas K, Chrysanthopoulou A, Vassilopoulos D, Apostolidou E, Skendros P, Girod A, et al. Tissue factor expression in neutrophil extracellular traps and neutrophil derived microparticles in antineutrophil cytoplasmic antibody associated vasculitis may promote thromboinflammation and the thrombophilic state associated with the disease. Ann Rheum Dis. 2014;73(10):1854–63. Epub 2013/07/23. doi: 10.1136/annrheumdis-2013-203430 23873874.

29. Warnatsch A, Ioannou M, Wang Q, Papayannopoulos V. Inflammation. Neutrophil extracellular traps license macrophages for cytokine production in atherosclerosis. Science (New York, NY). 2015;349(6245):316–20. Epub 2015/07/18. doi: 10.1126/science.aaa8064 26185250; PubMed Central PMCID: PMC4854322.

30. Wang Y, Xiao Y, Zhong L, Ye D, Zhang J, Tu Y, et al. Increased neutrophil elastase and proteinase 3 and augmented NETosis are closely associated with beta-cell autoimmunity in patients with type 1 diabetes. Diabetes. 2014;63(12):4239–48. Epub 2014/08/06. doi: 10.2337/db14-0480 25092677.

31. Fuchs TA, Brill A, Duerschmied D, Schatzberg D, Monestier M, Myers DD Jr., et al. Extracellular DNA traps promote thrombosis. Proceedings of the National Academy of Sciences of the United States of America. 2010;107(36):15880–5. Epub 2010/08/28. doi: 10.1073/pnas.1005743107 20798043; PubMed Central PMCID: PMC2936604.

32. Huang YM, Wang H, Wang C, Chen M, Zhao MH. Promotion of hypercoagulability in antineutrophil cytoplasmic antibody-associated vasculitis by C5a-induced tissue factor-expressing microparticles and neutrophil extracellular traps. Arthritis Rheumatol. 2015;67(10):2780–90. Epub 2015/06/23. doi: 10.1002/art.39239 26097236.

33. Metzler KD, Goosmann C, Lubojemska A, Zychlinsky A, Papayannopoulos V. A myeloperoxidase-containing complex regulates neutrophil elastase release and actin dynamics during NETosis. Cell reports. 2014;8(3):883–96. Epub 2014/07/30. doi: 10.1016/j.celrep.2014.06.044 25066128; PubMed Central PMCID: PMC4471680.

34. Kolaczkowska E, Jenne CN, Surewaard BG, Thanabalasuriar A, Lee WY, Sanz MJ, et al. Molecular mechanisms of NET formation and degradation revealed by intravital imaging in the liver vasculature. Nature communications. 2015;6:6673. Epub 2015/03/27. doi: 10.1038/ncomms7673 25809117; PubMed Central PMCID: PMC4389265.

35. Almeida CB, Franco-Penteado C, Saad ST, Costa FF, Conran N. Sickle cell disease serum induces NADPH enzyme subunit expression and oxidant production in leukocytes. Hematology (Amsterdam, Netherlands). 2010;15(6):422–9. Epub 2010/12/01. doi: 10.1179/102453310X12719010991786 21114906.

36. Papayannopoulos V, Metzler KD, Hakkim A, Zychlinsky A. Neutrophil elastase and myeloperoxidase regulate the formation of neutrophil extracellular traps. J Cell Biol. 2010;191(3):677–91. Epub 2010/10/27. doi: 10.1083/jcb.201006052 20974816; PubMed Central PMCID: PMC3003309.

37. Faurschou M, Borregaard N. Neutrophil granules and secretory vesicles in inflammation. Microbes Infect. 2003;5(14):1317–27. Epub 2003/11/14. doi: 10.1016/j.micinf.2003.09.008 14613775.

38. Bennewitz MF, Jimenez MA, Vats R, Tutuncuoglu E, Jonassaint J, Kato GJ, et al. Lung vaso-occlusion in sickle cell disease mediated by arteriolar neutrophil-platelet microemboli. JCI Insight. 2017;2(1):e89761. doi: 10.1172/jci.insight.89761 28097236; PubMed Central PMCID: PMC5214368.


Článek vyšel v časopise

PLOS One


2019 Číslo 12