An expanded rating curve model to estimate river discharge during tidal influences across the progressive-mixed-standing wave systems

Autoři: Allan E. Jones aff001;  Amber K. Hardison aff002;  Ben R. Hodges aff003;  James W. McClelland aff002;  Kevan B. Moffett aff001
Působiště autorů: School of the Environment, Washington State University Vancouver, Vancouver, WA, United States of America aff001;  Department of Marine Science, University of Texas Marine Science Institute, Port Aransas, TX, United States of America aff002;  Department of Civil, Architectural and Environmental Engineering, University of Texas at Austin, Austin, TX, United States of America aff003
Vyšlo v časopise: PLoS ONE 14(12)
Kategorie: Research Article
doi: 10.1371/journal.pone.0225758


Empirically quantifying tidally-influenced river discharge is typically laborious, expensive, and subject to more uncertainty than estimation of upstream river discharge. The tidal stage-discharge relationship is not monotonic nor necessarily single-valued, so conventional stage-based river rating curves fail in the tidal zone. Herein, we propose an expanded rating curve method incorporating stage-rate-of-change to estimate river discharge under tidal influences across progressive, mixed, and standing waves. This simple and inexpensive method requires (1) stage from a pressure transducer, (2) flow direction from a tilt current meter, and (3) a series of ADP surveys at different flow rates for model calibration. The method was validated using excerpts from 12 tidal USGS gauging stations during baseflow conditions. USGS gauging stations model discharge using a different more complex and expensive method. Comparison of new and previous models resulted in good R2 correlations (min 0.62, mean 0.87 with S.D. 0.10, max 0.97). The method for modeling tidally-influenced discharge during baseflow conditions was applied de novo to eight intertidal stations in the Mission and Aransas Rivers, Texas, USA. In these same rivers, the model was further expanded to identify and estimate tidally-influenced stormflow discharges. The Mission and Aransas examples illustrated the potential scientific and management utility of the applied tidal rating curve method for isolating transient tidal influences and quantifying baseflow and storm discharges to sensitive coastal waters.

Klíčová slova:

Crystals – Flooding – Fresh water – Geological surveys – Rivers – Surface water – Tides – Storms


1. Dingman SL. Physical hydrology. 2nd ed. / reissue. Long Grove, IL: Waveland Press Inc; 2008.

2. Dottori F, Martina MLV, Todini E. A dynamic rating curve approach to indirect discharge measurement. Hydrology and Earth System Sciences. 2009;13: 847.

3. Kennedy EJ. Discharge Ratings at Gaging Stations. Washington, D.C., USA: United States Geological Survey; 1984 p. 59. Report No.: Book 3, Chap. A10. Available:

4. Lovley DR, Phillips EJP. Organic Matter Mineralization with Reduction of Ferric Iron in Anaerobic Sediments. Appl Environ Microbiol. 1986;51: 683–689. 16347032

5. Lovley DR, Phillips EJP. Availability of Ferric Iron for Microbial Reduction in Bottom Sediments of the Freshwater Tidal Potomac River. Appl Environ Microbiol. 1986;52: 751–757. 16347168

6. Findlay S, Pace M, Lints D. Variability and transport of suspended sediment, particulate and dissolved organic carbon in the tidal freshwater Hudson River. Biogeochemistry. 1991;12: 149–169. doi: 10.1007/BF00002605

7. Cole JJ, Caraco NF, Peierls BL. Can Phytoplankton Maintain a Positive Carbon Balance in a Turbid, Freshwater, Tidal Estuary? Limnology and Oceanography. 1992;37: 1608–1617. doi: 10.2307/2838056

8. Savenije HHG. Salinity and tides in alluvial estuaries. 1st ed. Amsterdam; Boston: Elsevier; 2005.

9. Arndt S, Vanderborght J-P, Regnier P. Diatom growth response to physical forcing in a macrotidal estuary: Coupling hydrodynamics, sediment transport, and biogeochemistry. Journal of Geophysical Research: Oceans. 2007;112: C05045. doi: 10.1029/2006JC003581

10. Arndt S, Lacroix G, Gypens N, Regnier P, Lancelot C. Nutrient dynamics and phytoplankton development along an estuary–coastal zone continuum: A model study. Journal of Marine Systems. 2011;84: 49–66. doi: 10.1016/j.jmarsys.2010.08.005

11. Humphries P, Keckeis H, Finlayson B. The River Wave Concept: Integrating River Ecosystem Models. BioScience. 2014;64: 870–882. doi: 10.1093/biosci/biu130

12. Moftakhari HR, Jay DA, Talke SA, Kukulka T, Bromirski PD. A novel approach to flow estimation in tidal rivers. Water Resources Research. 2013;49: 4817–4832. doi: 10.1002/wrcr.20363

13. Palmer TA, Montagna PA, Pollack JB, Kalke RD, DeYoe HR. The role of freshwater inflow in lagoons, rivers, and bays. Hydrobiologia. 2011;667: 49–67. doi: 10.1007/s10750-011-0637-0

14. Pollack J, Kim H-C, Morgan E, Montagna P. Role of Flood Disturbance in Natural Oyster (Crassostrea virginica) Population Maintenance in an Estuary in South Texas, USA. Estuaries and Coasts. 2011;34: 187–197. doi: 10.1007/s12237-010-9338-6

15. Soballe DM, Kimmel BL. A Large-Scale Comparison of Factors Influencing Phytoplankton Abundance in Rivers, Lakes, and Impoundments. Ecology. 1987;68: 1943. doi: 10.2307/1939885 29357178

16. Jones AE, Hodges BR, McClelland JW, Hardison AK, Moffett KB. Residence-time-based classification of surface water systems. Water Resour Res. 2017;53: 5567–5584. doi: 10.1002/2016WR019928

17. Johnson SL. A general method for modeling coastal water pollutant loadings. Ph.D. Dissertation, The University of Texas at Austin. 2009. Available: = 7118

18. Mooney RF, McClelland JW. Watershed Export Events and Ecosystem Responses in the Mission–Aransas National Estuarine Research Reserve, South Texas. Estuaries and Coasts. 2012;35: 1468–1485. doi: 10.1007/s12237-012-9537-4

19. Musial CT, Sawyer AH, Barnes RT, Bray S, Knights D. Surface water–groundwater exchange dynamics in a tidal freshwater zone. Hydrological Processes. 2016;30: 739–750. doi: 10.1002/hyp.10623

20. Knights D, Sawyer AH, Barnes RT, Musial CT, Bray S. Tidal controls on riverbed denitrification along a tidal freshwater zone: Tides on Riverbed Denitrification. Water Resources Research. 2017;53: 799–816. doi: 10.1002/2016WR019405

21. Bruesewitz DA, Gardner WS, Mooney RF, Pollard L, Buskey EJ. Estuarine ecosystem function response to flood and drought in a shallow, semiarid estuary: Nitrogen cycling and ecosystem metabolism. Limnol Oceanogr. 2013;58: 2293–2309.

22. Reyna NE, Hardison AK, Liu Z. Influence of Major Storm Events on the Quantity and Composition of Particulate Organic Matter and the Phytoplankton Community in a Subtropical Estuary, Texas. Front Mar Sci. 2017;4. doi: 10.3389/fmars.2017.00043

23. Levesque VA, Oberg KA. Computing Discharge Using the Index Velocity Method. Reston, Virginia: U.S. Geological Survey; 2012 p. 148. Report No.: 3-A23. Available:

24. Ruhl CA, Simpson MR. Computation of Discharge Using the Index-Velocity Method in Tidally Affected Areas. Reston, Virginia: U.S. Geological Survey; 2005 p. 31. Report No.: 2005–5004.

25. Chen Y-C, Chiu C-L. An efficient method of discharge measurement in tidal streams. Journal of Hydrology. 2002;265: 212–224. doi: 10.1016/S0022-1694(02)00100-2

26. Chen Y-C, Yang T-M, Hsu N-S, Kuo T-M. Real-time discharge measurement in tidal streams by an index velocity. Environ Monit Assess. 2012;184: 6423–6436. doi: 10.1007/s10661-011-2430-y 22124583

27. Hsu M-H, Kuo AY, Kuo J-T, Liu W-C. Procedure to Calibrate and Verify Numerical Models of Estuarine Hydrodynamics. Journal of Hydraulic Engineering. 1999;125: 166–182. doi: 10.1061/(ASCE)0733-9429(1999)125:2(166)

28. Heniche M, Secretan Y, Boudreau P, Leclerc M. A two-dimensional finite element drying-wetting shallow water model for rivers and estuaries. Advances in Water Resources. 2000;23: 359–372.

29. Shen J, Haas L. Calculating age and residence time in the tidal York River using three-dimensional model experiments. Estuarine, Coastal and Shelf Science. 2004;61: 449–461. doi: 10.1016/j.ecss.2004.06.010

30. Warner JC. Numerical modeling of an estuary: A comprehensive skill assessment. Journal of Geophysical Research. 2005;110. doi: 10.1029/2004JC002691

31. Meert P, Pereira F, Willems P. Computationally efficient modelling of tidal rivers using conceptual reservoir-type models. Environmental Modelling & Software. 2016;77: 19–31. doi: 10.1016/j.envsoft.2015.11.010

32. Hidayat H, Hoitink AJF, Sassi MG, Torfs PJJF. Prediction of Discharge in a Tidal River Using Artificial Neural Networks. Journal of Hydrologic Engineering. 2014;19: 04014006. doi: 10.1061/(ASCE)HE.1943-5584.0000970

33. Maghrebi MF, Givehchi M. Discharge Estimation in a Tidal River with Partially Reverse Flow. Journal of Waterway, Port, Coastal, and Ocean Engineering. 2010;136: 266–275. doi: 10.1061/(ASCE)WW.1943-5460.0000049

34. Lee S, Cheong TS. Development of regression equations for the water discharge estimation in tidally affected rivers. KSCE J Civ Eng. 2009;13: 195–203. doi: 10.1007/s12205-009-0195-4

35. Hoitink AJF, Buschman FA, Vermeulen B. Continuous measurements of discharge from a horizontal acoustic Doppler current profiler in a tidal river. Water Resources Research. 2009;45. doi: 10.1029/2009WR007791

36. Sassi MG, Hoitink AJF, Vermeulen B, Hidayat. Discharge estimation from H-ADCP measurements in a tidal river subject to sidewall effects and a mobile bed. Water Resources Research. 2011;47. doi: 10.1029/2010WR009451

37. Hidayat H, Vermeulen B, Sassi MG, Torfs PJJF, Hoitink AJF. Discharge estimation in a backwater affected meandering river. Hydrol Earth Syst Sci. 2011;15: 2717–2728. doi: 10.5194/hess-15-2717-2011

38. Gisen JIA, Savenije HHG. Estimating bankfull discharge and depth in ungauged estuaries. Water Resources Research. 2015;51: 2298–2316. doi: 10.1002/2014WR016227

39. Nguyen AD, Savenije HHG, Pham DN, Tang DT. Using salt intrusion measurements to determine the freshwater discharge distribution over the branches of a multi-channel estuary: The Mekong Delta case. Estuarine, Coastal and Shelf Science. 2008;77: 433–445. doi: 10.1016/j.ecss.2007.10.010

40. Cai H, Savenije HHG, Jiang C. Analytical approach for predicting fresh water discharge in an estuary based on tidal water level observations. Hydrology and Earth System Sciences. 2014;18: 4153–4168.

41. Matte P, Secretan Y, Morin J. Reconstruction of Tidal Discharges in the St. Lawrence Fluvial Estuary: The Method of Cubature Revisited. Journal of Geophysical Research: Oceans. 2018;123: 5500–5524. doi: 10.1029/2018JC013834

42. Godin G. Chapter 19—Frictional effects in river tides. Tidal Hydrodynamics. New York: New York: J. Wiley; 1991. p. 883.

43. Jay DA. Green’s law revisited: Tidal long-wave propagation in channels with strong topography. Journal of Geophysical Research: Oceans. 1991;96: 20585–20598. doi: 10.1029/91JC01633

44. Bianchi TS, Pennock JR, Twilley RR, editors. Biogeochemistry of Gulf of Mexico estuaries. New York: John Wiley; 1999.

45. Evans A, Madden K, Palmer SM, editors. The Ecology and Sociology of the Mission-Aransas Estuary. 1st ed. Port Aransas, Texas: Mission-Aransas National Estuarine Research Reserve; 2012.

46. Fulbright TE, Diamond DD, Rappole J, Norwine J. The coastal sand plain of southern Texas. Rangelands. 1990; 337–340.

47. Ward GH. Process and Trends of Circulation Within the Corpus Christi Bay National Estuary Program Study Area. Corpus Christi Bay National Estuary Program. 1997;CCBNEP-21.

48. Ropelewski CF, Halpert MS. North American Precipitation and Temperature Patterns Associated with the El Niño/Southern Oscillation (ENSO). Mon Wea Rev. 1986;114: 2352–2362. doi: 10.1175/1520-0493(1986)114<2352:NAPATP>2.0.CO;2

49. Wolter K, Dole RM, Smith CA. Short-term climate extremes over the continental United States and ENSO. Part I: Seasonal temperatures. Journal of Climate; Boston. 1999;12: 3255–3272.

50. USGS. USGS Site Inventory—Estuary, Tidal Stream. 2017 [cited 15 Jan 2018]. Available: = ES&site_tp_cd = ST-TS&data_type = rt&group_key = NONE&format = sitefile_output&sitefile_output_format = html_table&column_name = agency_cd&column_name = site_no&column_name = station_nm&column_name = rt_bol&list_of_search_criteria = site_tp_cd%2Cdata_type

51. USGS. Water Resources of the United States—National Water Information System (NWIS) Mapper. In: National Water Information System: Mapper [Internet]. 13 Jun 2018 [cited 13 Jun 2018]. Available:

52. USGS. The National Map. In: The National Map—Data Delivery [Internet]. 2019 [cited 4 Sep 2019]. Available:

53. TIGER/Line Shapefile, 2013, state, Texas, Current County Subdivision State-based— [cited 4 Sep 2019]. Available:

54. Turnipseed DP, Sauer VB. Discharge Measurements at Gaging Stations. Reston, VA: U.S. Geological Survey; 2010. p. 87. Available:

55. Sheremet V, Manning J, Pelletier E. Environmental monitors on lobster traps (eMOLT) Phase VI: Bottom Currents. Northeast Fisheries Science Center; 2009. Available:

56. Sheremet V. Building Observing System Deployed on Lobster Traps along the Northeast Atlantic Shelf. Fishermen & Scientist Research Society: 20th Annual Conference; 2013 Feb 20; Truro, Nova Scotia. Available:

57. Aretxabaleta AL, Butman B, Signell RP, Dalyander PS, Sherwood CR, Sheremet VA, et al. Near-bottom circulation and dispersion of sediment containing Alexandrium fundyense cysts in the Gulf of Maine during 2010–2011. Deep Sea Research Part II: Topical Studies in Oceanography. 2014;103: 96–111. doi: 10.1016/j.dsr2.2013.11.003 26045635

58. Maio CV, Donnelly JP, Sullivan R, Madsen SM, Weidman CR, Gontz AM, et al. Sediment dynamics and hydrographic conditions during storm passage, Waquoit Bay, Massachusetts. Marine Geology. 2016;381: 67–86. doi: 10.1016/j.margeo.2016.07.004

59. Tunnell J, Buskey EJ, Peterson T. Freshwater Inflows: Determining Flow Regimes in the Face of Land Use Change, Climate Change, and Other Unknowns. National Estuarine Research Reserve; 2015 Jul p. 47. Report No.: Final Report.

60. NOAA. Station Selection—NOAA Tides & Currents. In: NOAA Tides & Currents—Station Selection [Internet]. 13 Dec 2017 [cited 1 Jun 2017]. Available: = Water+Levels#Texas

61. SonTek. RiverSurveyor System Manual. San Diego, CA: SonTek/YSI Inc.; 2007 May p. 189. Available:

62. Teledyne. StreamPro ADCP Guide. Poway, CA: Teledyne RD Instruments; 2015 Sep p. 101. Report No.: 95B-6003–00. Available:

63. Sontek. SonTek/YSI Inc. FlowTracker ADV Manual. SonTek/YSI Inc.; 2007 Jul. Available:

64. Ensign SH, Doyle MW, Piehler MF. The effect of tide on the hydrology and morphology of a freshwater river: TIDAL RIVER HYDROLOGY AND MORPHOLOGY. Earth Surface Processes and Landforms. 2013;38: 655–660. doi: 10.1002/esp.3392

65. Gong W, Shen J. The response of salt intrusion to changes in river discharge and tidal mixing during the dry season in the Modaomen Estuary, China. Continental Shelf Research. 2011;31: 769–788. doi: 10.1016/j.csr.2011.01.011

66. NOAA. El Niño Southern Oscillation (ENSO). In: Earth System Research Laboratory: Physical Sciences Division [Internet]. 2017 [cited 19 Jul 2017]. Available:

67. NOAA. Climate Prediction Center—Monitoring & Data: ENSO Impacts on the U.S.—Previous Events. In: National Weather Service—Climate Prediction Center [Internet]. 13 Dec 2017 [cited 19 Jul 2017]. Available:

68. Smoot GF, Novak CE. Measurement of discharge by the moving-boat method. US Government Printing Office; 1969. Available:

69. US EPA O. Ecoregions of North America. North America; 2015. Available:

70. Peel MC, Finlayson BL, McMahon TA. Updated world map of the Köppen-Geiger climate classification. Hydrol Earth Syst Sci. 2007;11: 1633–1644. doi: 10.5194/hess-11-1633-2007

Článek vyšel v časopise


2019 Číslo 12