TRPC3 determines osmosensitive [Ca2+]i signaling in the collecting duct and contributes to urinary concentration

Autoři: Viktor N. Tomilin aff001;  Mykola Mamenko aff002;  Oleg Zaika aff001;  Guohui Ren aff001;  Sean P. Marrelli aff003;  Lutz Birnbaumer aff004;  Oleh Pochynyuk aff001
Působiště autorů: Department of Integrative Biology and Pharmacology, the University of Texas Health Science Center at Houston, Houston, Texas, United States of America aff001;  Department of Physiology, Medical College of Georgia, Augusta University, Augusta, Georgia, United States of America aff002;  Department of Neurology, the University of Texas Health Science Center at Houston, Houston, Texas, United States of America aff003;  Neurobiology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, United States of America aff004;  Institute of Biomedical Research (BIOMED), School of Medical Sciences, Catholic University of Argentina, Buenos Aires, Argentina aff005
Vyšlo v časopise: PLoS ONE 14(12)
Kategorie: Research Article
doi: 10.1371/journal.pone.0226381


It is well-established that the kidney collecting duct (CD) plays a central role in regulation of systemic water homeostasis. Aquaporin 2 (AQP2)-dependent water reabsorption in the CD critically depends on the arginine vasopressin (AVP) antidiuretic input and the presence of a favorable osmotic gradient at the apical plasma membrane with tubular lumen being hypotonic compared to the cytosol. This osmotic difference creates a mechanical force leading to an increase in [Ca2+]i in CD cells. The significance of the osmosensitive [Ca2+]i signaling for renal water transport and urinary concentration remain unknown. To examine molecular mechanism and physiological relevance of osmosensitivity in the CD, we implemented simultaneous direct measurements of [Ca2+]i dynamics and the rate of cell swelling as a readout of the AQP2-dependent water reabsorption in freshly isolated split-opened CDs of wild type and genetically manipulated animals and combined this with immunofluorescent detection of AVP-induced AQP2 trafficking and assessment of systemic water balance. We identified the critical role of the Ca2+-permeable TRPC3 channel in osmosensitivity and water permeability in the CD. We further demonstrated that TRPC3 -/- mice exhibit impaired urinary concentration, larger urinary volume and a greater weight loss in response to water deprivation despite increased AVP levels and AQP2 abundance. TRPC3 deletion interfered with AQP2 translocation to the plasma membrane in response to water deprivation. In summary, we provide compelling multicomponent evidence in support of a critical contribution of TRPC3 in the CD for osmosensitivity and renal water handling.

Klíčová slova:

Cell membranes – Fluorescence imaging – Kidneys – Mannitol – Membrane trafficking – Permeability – Vasopressin – Hypotonic


1. Fenton RA, Knepper MA. Mouse models and the urinary concentrating mechanism in the new millennium. Physiological reviews. 2007;87(4):1083–112. doi: 10.1152/physrev.00053.2006 17928581.

2. Nielsen S, Frokiaer J, Marples D, Kwon TH, Agre P, Knepper MA. Aquaporins in the kidney: from molecules to medicine. Physiological reviews. 2002;82(1):205–44. doi: 10.1152/physrev.00024.2001 11773613.

3. Knepper MA, Kwon TH, Nielsen S. Molecular physiology of water balance. The New England journal of medicine. 2015;372(14):1349–58. doi: 10.1056/NEJMra1404726 25830425.

4. Wilson JL, Miranda CA, Knepper MA. Vasopressin and the regulation of aquaporin-2. Clinical and experimental nephrology. 2013;17(6):751–64. doi: 10.1007/s10157-013-0789-5 23584881; PubMed Central PMCID: PMC3775849.

5. Bockenhauer D, Bichet DG. Pathophysiology, diagnosis and management of nephrogenic diabetes insipidus. Nature reviews Nephrology. 2015;11(10):576–88. doi: 10.1038/nrneph.2015.89 26077742.

6. Rosenthal W, Seibold A, Antaramian A, Lonergan M, Arthus MF, Hendy GN, et al. Molecular identification of the gene responsible for congenital nephrogenic diabetes insipidus. Nature. 1992;359(6392):233–5. doi: 10.1038/359233a0 1356229.

7. Rinschen MM, Yu MJ, Wang G, Boja ES, Hoffert JD, Pisitkun T, et al. Quantitative phosphoproteomic analysis reveals vasopressin V2-receptor-dependent signaling pathways in renal collecting duct cells. Proceedings of the National Academy of Sciences of the United States of America. 2010;107(8):3882–7. doi: 10.1073/pnas.0910646107 PubMed Central PMCID: PMC2840509. 20139300

8. Matsumura Y, Uchida S, Rai T, Sasaki S, Marumo F. Transcriptional regulation of aquaporin-2 water channel gene by cAMP. Journal of the American Society of Nephrology: JASN. 1997;8(6):861–7. 9189851.

9. Yasui M, Zelenin SM, Celsi G, Aperia A. Adenylate cyclase-coupled vasopressin receptor activates AQP2 promoter via a dual effect on CRE and AP1 elements. The American journal of physiology. 1997;272(4 Pt 2):F443–50. 9140044.

10. Li SZ, McDill BW, Kovach PA, Ding L, Go WY, Ho SN, et al. Calcineurin-NFATc signaling pathway regulates AQP2 expression in response to calcium signals and osmotic stress. American journal of physiology Cell physiology. 2007;292(5):C1606–16. doi: 10.1152/ajpcell.00588.2005 17166937.

11. McCarty NA, O'Neil RG. Calcium signaling in cell volume regulation. Physiological reviews. 1992;72(4):1037–61. doi: 10.1152/physrev.1992.72.4.1037 1332089.

12. Sipos A, Vargas S, Peti-Peterdi J. Direct demonstration of tubular fluid flow sensing by macula densa cells. American journal of physiology Renal physiology. 2010;299(5):F1087–93. doi: 10.1152/ajprenal.00469.2009 20719981; PubMed Central PMCID: PMC2980403.

13. Praetorius HA, Leipziger J. Intrarenal purinergic signaling in the control of renal tubular transport. Annual review of physiology. 2010;72:377–93. doi: 10.1146/annurev-physiol-021909-135825 20148681.

14. Venkatachalam K, Montell C. TRP channels. Annu Rev Biochem. 2007;76:387–417. doi: 10.1146/annurev.biochem.75.103004.142819 17579562.

15. Song MY, Yuan JX. Introduction to TRP channels: structure, function, and regulation. Advances in experimental medicine and biology. 2010;661:99–108. doi: 10.1007/978-1-60761-500-2_6 20204725.

16. Goel M, Sinkins WG, Zuo CD, Estacion M, Schilling WP. Identification and localization of TRPC channels in the rat kidney. American journal of physiology Renal physiology. 2006;290(5):F1241–52. doi: 10.1152/ajprenal.00376.2005 16303855.

17. Berrout J, Jin M, Mamenko M, Zaika O, Pochynyuk O, O'Neil RG. Function of TRPV4 as a mechanical transducer in flow-sensitive segments of the renal collecting duct system. The Journal of biological chemistry. 2012;287(12):8782–91. doi: 10.1074/jbc.M111.308411 22298783

18. Mamenko MV, Boukelmoune N, Tomilin VN, Zaika OL, Jensen VB, O'Neil RG, et al. The renal TRPV4 channel is essential for adaptation to increased dietary potassium. Kidney international. 2017;91(6):1398–409. doi: 10.1016/j.kint.2016.12.010 28187982; PubMed Central PMCID: PMC5429991.

19. Tomilin V, Reif GA, Zaika O, Wallace DP, Pochynyuk O. Deficient transient receptor potential vanilloid type 4 function contributes to compromised [Ca2+]i homeostasis in human autosomal-dominant polycystic kidney disease cells. FASEB journal: official publication of the Federation of American Societies for Experimental Biology. 2018;32(8):4612–23. doi: 10.1096/fj.201701535RR 29553832; PubMed Central PMCID: PMC6044056.

20. Liedtke W, Friedman JM. Abnormal osmotic regulation in trpv4-/- mice. Proceedings of the National Academy of Sciences of the United States of America. 2003;100(23):13698–703. doi: 10.1073/pnas.1735416100 14581612

21. Janas S, Seghers F, Schakman O, Alsady M, Deen P, Vriens J, et al. TRPV4 is associated with central rather than nephrogenic osmoregulation. Pflugers Archiv: European journal of physiology. 2016;468(9):1595–607. doi: 10.1007/s00424-016-1850-5 27364478.

22. Yip KP. Coupling of vasopressin-induced intracellular Ca2+ mobilization and apical exocytosis in perfused rat kidney collecting duct. The Journal of physiology. 2002;538(Pt 3):891–9. doi: 10.1113/jphysiol.2001.012606 11826172; PubMed Central PMCID: PMC2290104.

23. Chou CL, Yip KP, Michea L, Kador K, Ferraris JD, Wade JB, et al. Regulation of aquaporin-2 trafficking by vasopressin in the renal collecting duct. Roles of ryanodine-sensitive Ca2+ stores and calmodulin. The Journal of biological chemistry. 2000;275(47):36839–46. doi: 10.1074/jbc.M005552200 10973964.

24. Balasubramanian L, Sham JS, Yip KP. Calcium signaling in vasopressin-induced aquaporin-2 trafficking. Pflugers Archiv: European journal of physiology. 2008;456(4):747–54. doi: 10.1007/s00424-007-0371-7 17957381.

25. Mamenko M, Dhande I, Tomilin V, Zaika O, Boukelmoune N, Zhu Y, et al. Defective Store-Operated Calcium Entry Causes Partial Nephrogenic Diabetes Insipidus. Journal of the American Society of Nephrology: JASN. 2016;27(7):2035–48. doi: 10.1681/ASN.2014121200 26574044; PubMed Central PMCID: PMC4926963.

26. Goel M, Sinkins WG, Zuo CD, Hopfer U, Schilling WP. Vasopressin-induced membrane trafficking of TRPC3 and AQP2 channels in cells of the rat renal collecting duct. American journal of physiology Renal physiology. 2007;293(5):F1476–88. doi: 10.1152/ajprenal.00186.2007 17699554.

27. Goel M, Zuo CD, Schilling WP. Role of cAMP/PKA signaling cascade in vasopressin-induced trafficking of TRPC3 channels in principal cells of the collecting duct. American journal of physiology Renal physiology. 2010;298(4):F988–96. doi: 10.1152/ajprenal.00586.2009 20107112; PubMed Central PMCID: PMC2853306.

28. Fan C, Choi W, Sun W, Du J, Lu W. Structure of the human lipid-gated cation channel TRPC3. eLife. 2018;7. doi: 10.7554/eLife.36852 29726814; PubMed Central PMCID: PMC5967863.

29. Hartmann J, Dragicevic E, Adelsberger H, Henning HA, Sumser M, Abramowitz J, et al. TRPC3 channels are required for synaptic transmission and motor coordination. Neuron. 2008;59(3):392–8. doi: 10.1016/j.neuron.2008.06.009 18701065; PubMed Central PMCID: PMC2643468.

30. Mamenko M, Zaika O, Doris PA, Pochynyuk O. Salt-dependent inhibition of epithelial Na+ channel-mediated sodium reabsorption in the aldosterone-sensitive distal nephron by bradykinin. Hypertension. 2012;60(5):1234–41. doi: 10.1161/HYPERTENSIONAHA.112.200469 23033373; PubMed Central PMCID: PMC3475746.

31. Mironova E, Bugay V, Pochynyuk O, Staruschenko A, Stockand JD. Recording ion channels in isolated, split-opened tubules. Methods in molecular biology. 2013;998:341–53. doi: 10.1007/978-1-62703-351-0_27 23529443.

32. Mamenko M, Zaika O, O'Neil RG, Pochynyuk O. Ca2+ Imaging as a tool to assess TRP channel function in murine distal nephrons. Methods in molecular biology. 2013;998:371–84. doi: 10.1007/978-1-62703-351-0_29 23529445.

33. Mamenko M, Zaika OL, Boukelmoune N, Berrout J, O'Neil RG, Pochynyuk O. Discrete control of TRPV4 channel function in the distal nephron by protein kinases A and C. The Journal of biological chemistry. 2013;288(28):20306–14. doi: 10.1074/jbc.M113.466797 PubMed Central PMCID: PMC3711297. 23709216

34. Zaika O, Mamenko M, Berrout J, Boukelmoune N, O'Neil RG, Pochynyuk O. TRPV4 dysfunction promotes renal cystogenesis in autosomal recessive polycystic kidney disease. Journal of the American Society of Nephrology: JASN. 2013;24(4):604–16. doi: 10.1681/ASN.2012050442 23411787; PubMed Central PMCID: PMC3609133.

35. Grynkiewicz G, Poenie M, Tsien RY. A new generation of Ca2+ indicators with greatly improved fluorescence properties. The Journal of biological chemistry. 1985;260(6):3440–50. 3838314.

36. Muallem S, Zhang BX, Loessberg PA, Star RA. Simultaneous recording of cell volume changes and intracellular pH or Ca2+ concentration in single osteosarcoma cells UMR-106-01. The Journal of biological chemistry. 1992;267(25):17658–64. 1325444.

37. Crowe WE, Altamirano J, Huerto L, Alvarez-Leefmans FJ. Volume changes in single N1E-115 neuroblastoma cells measured with a fluorescent probe. Neuroscience. 1995;69(1):283–96. doi: 10.1016/0306-4522(95)00219-9 8637626.

38. Taniguchi J, Tsuruoka S, Mizuno A, Sato J, Fujimura A, Suzuki M. TRPV4 as a flow sensor in flow-dependent K+ secretion from the cortical collecting duct. American journal of physiology Renal physiology. 2007;292(2):F667–F73. doi: 10.1152/ajprenal.00458.2005 16954339.

39. Du J, Wong WY, Sun L, Huang Y, Yao X. Protein Kinase G Inhibits Flow-Induced Ca2+ Entry into Collecting Duct Cells. Journal of the American Society of Nephrology: JASN. 2012;23(7):1172–80. doi: 10.1681/ASN.2011100972 22518003.

40. Tomilin V, Mamenko M, Zaika O, Pochynyuk O. Role of renal TRP channels in physiology and pathology. Seminars in immunopathology. 2016;38(3):371–83. doi: 10.1007/s00281-015-0527-z 26385481; PubMed Central PMCID: PMC4798925.

41. Hoffmann EK, Lambert IH, Pedersen SF. Physiology of cell volume regulation in vertebrates. Physiological reviews. 2009;89(1):193–277. doi: 10.1152/physrev.00037.2007 19126758.

42. Ford P, Rivarola V, Chara O, Blot-Chabaud M, Cluzeaud F, Farman N, et al. Volume regulation in cortical collecting duct cells: role of AQP2. Biology of the cell. 2005;97(9):687–97. doi: 10.1042/BC20040116 15859948.

43. Liu X, Bandyopadhyay BC, Nakamoto T, Singh B, Liedtke W, Melvin JE, et al. A role for AQP5 in activation of TRPV4 by hypotonicity: concerted involvement of AQP5 and TRPV4 in regulation of cell volume recovery. The Journal of biological chemistry. 2006;281(22):15485–95. doi: 10.1074/jbc.M600549200 16571723.

44. Galizia L, Flamenco MP, Rivarola V, Capurro C, Ford P. Role of AQP2 in activation of calcium entry by hypotonicity: implications in cell volume regulation. American journal of physiology Renal physiology. 2008;294(3):F582–90. doi: 10.1152/ajprenal.00427.2007 18094031.

45. Liu Y, Flores D, Carrisoza-Gaytan R, Rohatgi R. Biomechanical regulation of cyclooxygenase-2 in the renal collecting duct. American journal of physiology Renal physiology. 2014;306(2):F214–23. doi: 10.1152/ajprenal.00327.2013 24226521.

46. Shen J, Tu L, Chen D, Tan T, Wang Y, Wang S. TRPV4 channels stimulate Ca2+-induced Ca2+ release in mouse neurons and trigger endoplasmic reticulum stress after intracerebral hemorrhage. Brain research bulletin. 2019;146:143–52. doi: 10.1016/j.brainresbull.2018.11.024 30508606.

47. Zelenina M, Brismar H. Osmotic water permeability measurements using confocal laser scanning microscopy. European biophysics journal: EBJ. 2000;29(3):165–71. doi: 10.1007/pl00006645 10968208.

48. Strange K, Spring KR. Cell membrane water permeability of rabbit cortical collecting duct. The Journal of membrane biology. 1987;96(1):27–43. doi: 10.1007/bf01869332 3585984.

49. Pearce D, Soundararajan R, Trimpert C, Kashlan OB, Deen PM, Kohan DE. Collecting Duct Principal Cell Transport Processes and Their Regulation. Clinical journal of the American Society of Nephrology: CJASN. 2014. doi: 10.2215/CJN.05760513 24875192.

50. Bengele HH, Alexander EA, Lechene CP. Calcium and magnesium transport along the inner medullary collecting duct of the rat. The American journal of physiology. 1980;239(1):F24–9. doi: 10.1152/ajprenal.1980.239.1.F24 7395992.

51. Magaldi AJ, van Baak AA, Rocha AS. Calcium transport across rat inner medullary collecting duct perfused in vitro. The American journal of physiology. 1989;257(5 Pt 2):F738–45. doi: 10.1152/ajprenal.1989.257.5.F738 2589480.

52. Goel M, Schilling WP. Role of TRPC3 channels in ATP-induced Ca2+ signaling in principal cells of the inner medullary collecting duct. American journal of physiology Renal physiology. 2010;299(1):F225–33. doi: 10.1152/ajprenal.00670.2009 20410214; PubMed Central PMCID: PMC2904168.

53. Letavernier E, Rodenas A, Guerrot D, Haymann JP. Williams-Beuren syndrome hypercalcemia: is TRPC3 a novel mediator in calcium homeostasis? Pediatrics. 2012;129(6):e1626–30. doi: 10.1542/peds.2011-2507 22566418.

54. Kuwahara M, Iwai K, Ooeda T, Igarashi T, Ogawa E, Katsushima Y, et al. Three families with autosomal dominant nephrogenic diabetes insipidus caused by aquaporin-2 mutations in the C-terminus. American journal of human genetics. 2001;69(4):738–48. doi: 10.1086/323643 11536078; PubMed Central PMCID: PMC1226060.

Článek vyšel v časopise


2019 Číslo 12