HeLa-CCL2 cell heterogeneity studied by single-cell DNA and RNA sequencing

Autoři: Wan-er Hu aff001;  Xin Zhang aff002;  Qiu-fang Guo aff002;  Jing-wei Yang aff002;  Yuan Yang aff003;  Shi-cheng Wei aff001;  Xiao-dong Su aff002
Působiště autorů: Academy for Advanced Interdisciplinary Studies (AAIS), Peking University, Beijing, China aff001;  Biomedical Pioneering Innovation Center (BIOPIC), and State Key Laboratory of Protein and Plant Gene Research, Peking University, Beijing, China aff002;  Clinical Research Center, Guizhou Medical University Hospital, Guiyang, China aff003
Vyšlo v časopise: PLoS ONE 14(12)
Kategorie: Research Article
doi: 10.1371/journal.pone.0225466


The HeLa cells are the earliest and mostly used laboratory human cells for biomedical particularly cancer research. They were derived from a patient’s cervical cancerous tissue, and are known for their heterogeneous cellular origin and variable genomic landscapes. Single-cell sequencing techniques with faithful linear and uniformly amplified genomes (DNA) and transcriptomes (RNA) may facilitate the study of cellular differences at the individual cell level. In this work, we have performed single-cell DNA and RNA sequencing with HeLa-CCL2 cells to study their heterogeneity. We have studied the complexity of copy number variations (CNVs) of HeLa-CCL2 genome at the single cell level, and revealed the transcriptomic heterogeneity of HeLa-CCL2. We also analyzed the relationship between genome and transcriptome at the single-cell level, and found overall correlation between CNV and transcriptome expression patterns. Finally, we concluded that although single-cell sequencing techniques are applicable to study heterogeneous cells such as HeLa-CCL2, the data analyses need to be more careful and well controlled.

Klíčová slova:

Copy number variation – DNA sequencing – Gene expression – Genome complexity – Genomics – HeLa cells – RNA sequencing – Transcriptome analysis


1. Gey GO, Coffman WD, Kubicek MT. Tissue culture studies of the proliferative capacity of cervical carcinoma and normal epithelium. Cancer Res. 1952;12:264–5.

2. Theodore TP, Philip IM. A rapid method for viable cell titration and clone production with HeLa cells in tissue culture: the use of x-irradiated cells to supply conditioning factors. Proc Natl Acad Sci USA. 1955;41(432–437).

3. Landry JJ, Pyl PT, Rausch T, Zichner T, Tekkedil MM, Stütz AM, et al. The Genomic and Transcriptomic Landscape of a HeLa Cell Line. G3. 2013;3(8):1213–24. doi: 10.1534/g3.113.005777 23550136

4. Adey A, Burton JN, Kitzman JO, Hiatt JB, Lewis AP, Martin BK, et al. The haplotype-resolved genome and epigenome of the aneuploid HeLa cancer cell line. Nature. 2013;500(7461):207–11. doi: 10.1038/nature12064 23925245

5. Macville M, Schrock E, Padilla-Nash H, Keck C, Ghadimi BM, Zimonjic D, et al. Comprehensive and definitive molecular cytogenetic characterization of HeLa cells by spectral karyotyping. Cancer Res. 1999;59(1):141–50. Epub 1999/01/19. 9892199.

6. Frattini A, Fabbri M, Valli R, De Paoli E, Montalbano G, Gribaldo L, et al. High variability of genomic instability and gene expression profiling in different HeLa clones. Sci Rep. 2015;5:15377. Epub 2015/10/21. doi: 10.1038/srep15377 26483214; PubMed Central PMCID: PMC4613361.

7. Ben-David U, Siranosian B, Ha G, Tang H, Oren Y, Hinohara K, et al. Genetic and transcriptional evolution alters cancer cell line drug response. Nature. 2018;560(7718):325–30. Epub 2018/08/10. doi: 10.1038/s41586-018-0409-3 30089904.

8. Burrell RA, McClelland SE, Endesfelder D, Groth P, Weller MC, Shaikh N, et al. Replication stress links structural and numerical cancer chromosomal instability. Nature. 2013;494(7438):492–6. Epub 2013/03/01. doi: 10.1038/nature11935 23446422; PubMed Central PMCID: PMC4636055.

9. Gerlinger M, Rowan AJ, Horswell S, Math M, Larkin J, Endesfelder D, et al. Intratumor heterogeneity and branched evolution revealed by multiregion sequencing. N Engl J Med.2012;366(10):883–892. doi: 10.1056/NEJMoa1113205 22397650

10. Ding L, Ley TJ, Larson DE, Miller CA, Koboldt DC, Welch JS, et al. Clonal evolution in relapsed acute myeloid leukaemia revealed by whole-genome sequencing. Nature. 2012;418(7382):506–10. doi: 10.1038/nature10738 22237025

11. Zhang L, Cui X, Schmitt K, Hubert R, Navidi W, Arnheim N. Whole genome amplification from a single cell: implications for genetic analysis. Proc Natl Acad Sci USA.1992;89(13):5847–51. doi: 10.1073/pnas.89.13.5847 1631067

12. Telenius H, Carter NP, Bebb CE, Nordenskjold M, Ponder BA, Tunnacliffe A. Degenerate oligonucleotide-primed PCR: General amplification of target DNA by a single degenerate primer. Genomics. 1992;13(3):718–25. doi: 10.1016/0888-7543(92)90147-k 1639399

13. Dean FB, Hosono S, Fang L, Wu X, Faruqi AF, Bray-Ward P, et al. Comprehensive human genome amplification using multiple displacement amplification. Proc Natl Acad Sci USA. 2002;99(8):5261–6. doi: 10.1073/pnas.082089499 11959976

14. Zong C, Lu S, Chapman AR, Xie XS. Genome-wide detection of single-nucleotide and copy-number variations of a single human cell. Science. 2012;338(6114):1622–6. doi: 10.1126/science.1229164 23258894

15. He F, Zhou W, Cai R, Yan T, Xu X. Systematic assessment of the performance of whole-genome amplification for SNP/CNV detection and beta-thalassemia genotyping. J Hum Genet. 2018;63(4):407–16. Epub 2018/02/15. doi: 10.1038/s10038-018-0411-5 29440707.

16. Tang F, Barbacioru C, Wang Y, Nordman E, Lee C, Xu N, et al. mRNA-Seq whole-transcriptome analysis of a single cell. Nat Methods. 2009;6(5):377–82. Epub 2009/04/08. doi: 10.1038/nmeth.1315 19349980.

17. Kurimoto K, Yabuta Y, Ohinata Y, Ono Y, Uno KD, Yamada RG, et al. An improved single-cell cDNA amplification method for efficient high-density oligonucleotide microarray analysis. Nucleic Acids Res. 2006;34(5):e24.

18. Kurimoto K, Yabuta Y, Ohinata Y, Saitou M. Global single-cell cDNA amplification to provide a template for representative high-density oligonucleotide microarray analysis. Nat Protoc. 2007;2(3):739–52. doi: 10.1038/nprot.2007.79 17406636

19. Ramskold D, Luo S, Wang YC, Li R, Deng Q, Faridani OR, et al. Full-length mRNA-Seq from single-cell levels of RNA and individual circulating tumor cells. Nat Biotechnol. 2012;30(8):777–82. Epub 2012/07/24. doi: 10.1038/nbt.2282 22820318; PubMed Central PMCID: PMC3467340.

20. Picelli S, Faridani OR, BjRklund AK, Winberg G, Sagasser S, Sandberg R. Full-length RNA-seq from single cells using Smart-seq2. Nature. 2014;9(1):171–81. doi: 10.1038/nprot.2014.006 24385147

21. Li L, Dong J, Yan L, Yong J, Liu X, Hu Y, et al. Single-Cell RNA-Seq Analysis Maps Development of Human Germline Cells and Gonadal Niche Interactions. Cell Stem Cell. 2017;20(6):891–2. Epub 2017/06/03. doi: 10.1016/j.stem.2017.05.009 28575695.

22. Hashimshony T, Wagner F, Sher N, Yanai I. CEL-Seq: Single-Cell RNA-Seq by Multiplexed Linear Amplification. Cell Rep. 2012;2(3):666–73. doi: 10.1016/j.celrep.2012.08.003 22939981

23. Islam S, Kjällquist U, Moliner A, Zajac P, Fan JB, Lönnerberg P, et al. Highly multiplexed and strand-specific single-cell RNA 5' end sequencing. Nat Protoc. 2012;7(5):813. doi: 10.1038/nprot.2012.022 22481528

24. Islam S, Zeisel A, Joost S, La Manno G, Zajac P, Kasper M, et al. Quantitative single-cell RNA-seq with unique molecular identifiers. Nat Methods. 2014;11(2):163–6. doi: 10.1038/nmeth.2772 24363023

25. Klein AM, Mazutis L, Akartuna I, Tallapragada N, Veres A, Li V, et al. Droplet barcoding for single-cell transcriptomics applied to embryonic stem cells. Cell. 2015;161(5):1187–201. doi: 10.1016/j.cell.2015.04.044 26000487

26. Li H, Durbin R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics. 2009;25(14):1754–60. Epub 2009/05/20. doi: 10.1093/bioinformatics/btp324 19451168; PubMed Central PMCID: PMC2705234.

27. Baslan T, Kendall J, Rodgers L, Cox H, Riggs M, Stepansky A, et al. Genome-wide copy number analysis of single cells. Nature Protoc. 2012;7(7):1024–41. doi: 10.1038/nprot.2012.039 22555242

28. Pertea M, Kim D, Pertea GM, Leek JT, Salzberg SL. Transcript-level expression analysis of RNA-seq experiments with HISAT, StringTie and Ballgown. Nat Protoc. 2016;11(9):1650–67. Epub 2016/08/26. doi: 10.1038/nprot.2016.095 27560171; PubMed Central PMCID: PMC5032908.

29. Kim D, Langmead B, Salzberg SL. HISAT: a fast spliced aligner with low memory requirements. Nat Methods. 2015;12(4):357–60. Epub 2015/03/10. doi: 10.1038/nmeth.3317 25751142; PubMed Central PMCID: PMC4655817.

30. Anders S, Pyl PT, Huber W. HTSeq—a Python framework to work with high-throughput sequencing data. Bioinformatics. 2015;31(2):166–9. Epub 2014/09/28. doi: 10.1093/bioinformatics/btu638 25260700; PubMed Central PMCID: PMC4287950.

31. Stuart T, Butler A, Hoffman P, Hafemeister C, Papalexi E, Mauck WM 3rd, et al. Comprehensive Integration of Single-Cell Data. Cell. 2019;177(7):1888–1902. doi: 10.1016/j.cell.2019.05.031 31178118

32. Korsunsky I, Fan J, Slowikowski K, Zhang F, Wei K, Baglaenko Y, et al. Fast, sensitive, and flexible integration of single cell data with Harmony. Biorxiv. 2018:461954.

33. inferCNV of the Trinity CTAT Project. https://githubcom/broadinstitute/inferCNV.

34. Yu G, Wang LG, Han Y, He QY. clusterProfiler: an R package for comparing biological themes among gene clusters. Omics. 2012;16(5):284–7. doi: 10.1089/omi.2011.0118 22455463

35. Hou Y, Fan W, Yan L, Li R, Lian Y, Huang J, et al. Genome analyses of single human oocytes. Cell. 2013;155(7):1492–506. doi: 10.1016/j.cell.2013.11.040 24360273

36. Ni X, Zhuo M, Su Z, Duan J, Gao Y, Wang Z, et al. Reproducible copy number variation patterns among single circulating tumor cells of lung cancer patients. Proc Natl Acad Sci USA. 2013;110(52):21083–8. doi: 10.1073/pnas.1320659110 24324171

Článek vyšel v časopise


2019 Číslo 12