Tyrphostin AG490 reduces inflammation and fibrosis in neonatal obstructive nephropathy


Autoři: Mojca Gasparitsch aff001;  Alexandra Schieber aff001;  Teresa Schaubeck aff001;  Ursula Keller aff001;  Marco Cattaruzza aff002;  Bärbel Lange-Sperandio aff001
Působiště autorů: Dr. v. Hauner Children’s Hospital, Division of Pediatric Nephrology, Ludwig-Maximilians-University, Munich, Germany aff001;  Department of Physiology, Ruprecht-Karls-University, Heidelberg, Germany aff002
Vyšlo v časopise: PLoS ONE 14(12)
Kategorie: Research Article
doi: 10.1371/journal.pone.0226675

Souhrn

Background

Congenital obstructive nephropathy is the main cause of end-stage renal disease in infants and children. Renal insufficiency is due to impaired growth and maturation in the developing kidney with obstruction. Congenital obstructive nephropathy leads to cytokine mediated inflammation and the development of interstitial fibrosis. The Janus kinase-2 (JAK-2) and Signal Transducer and Activator of Transcription’-3 (STAT3) are involved in cytokine production, inflammation, and interstitial fibrosis.

Methods

We studied the role of JAK2/STAT3 in a model of congenital obstructive nephropathy using unilateral ureteral obstruction (UUO) in neonatal mice at the second day of life. Cytokine production, inflammation, and interstitial fibrosis were analyzed in obstructed and sham operated kidneys of neonatal mice treated with or without JAK2/STAT3 inhibitor Tyrphostin AG490. To mimic obstruction and distension, proximal tubular cells were stretched in vitro.

Results

We show that STAT3 is highly activated in the developing kidney with obstruction and in proximal tubular cells following stretch. JAK2/STAT3 activation mediates cytokine release and leukocyte recruitment into neonatal kidneys after UUO. Pharmacological blockade of JAK2/STAT3 by Tyrphostin AG490 reduced inflammation, tubular apoptosis, and interstitial fibrosis. JAK2/STAT3 blockade decreased pro-inflammatory and profibrotic mediators in tubular cells.

Conclusion

Our findings provide evidence that JAK2/STAT3 mediates inflammation and fibrosis in the developing kidney with obstruction. Blocking JAK2/STAT3 may prove beneficial in congenital obstructive nephropathy in children.

Klíčová slova:

Apoptosis – Enzyme-linked immunoassays – Fibroblasts – Fibrosis – Inflammation – Kidneys – Macrophages – STAT signaling


Zdroje

1. Lange-Sperandio B. Pediatric Obstructive Uropathy. In: Avner DE, Harmon EW, Niaudet P, Yoshikawa N, Emma F, Goldstein LS, editors. Pediatric Nephrology. Berlin, Heidelberg: Springer Berlin Heidelberg; 2016. pp. 1749–77.

2. van der Ven AT, Vivante A, Hildebrandt F. Novel Insights into the Pathogenesis of Monogenic Congenital Anomalies of the Kidney and Urinary Tract. J Am Soc Nephrol. 2018;29(1): 36–50. doi: 10.1681/ASN.2017050561 29079659

3. Jain S, Chen F. Developmental pathology of congenital kidney and urinary tract anomalies. Clin Kidney J. 2019;12(3): 382–99. doi: 10.1093/ckj/sfy112 31198539

4. Chevalier RL, Thornhill BA, Forbes MS, Kiley SC. Mechanisms of renal injury and progression of renal disease in congenital obstructive nephropathy. Pediatr Nephrol. 2010;25(4): 687–97. doi: 10.1007/s00467-009-1316-5 19844747

5. Gasparitsch M, Arndt AK, Pawlitschek F, Oberle S, Keller U, Kasper M, et al. RAGE-mediated interstitial fibrosis in neonatal obstructive nephropathy is independent of NF-kappaB activation. Kidney Int. 2013;84(5): 911–9. doi: 10.1038/ki.2013.171 23677242

6. Chakraborty D, Sumova B, Mallano T, Chen CW, Distler A, Bergmann C, et al. Activation of STAT3 integrates common profibrotic pathways to promote fibroblast activation and tissue fibrosis. Nat Commun. 2017;8(1): 1130. doi: 10.1038/s41467-017-01236-6 29066712

7. Pace J, Paladugu P, Das B, He JC, Mallipattu SK. Targeting STAT3 signaling in kidney disease. Am J Physiol Renal Physiol. 2019;316(6): 1151–61.

8. Tao J, Mariani L, Eddy S, Maecker H, Kambham N, Mehta K, et al. JAK-STAT signaling is activated in the kidney and peripheral blood cells of patients with focal segmental glomerulosclerosis. Kidney Int. 2018;94(4): 795–808. doi: 10.1016/j.kint.2018.05.022 30093081

9. Pang M, Ma L, Gong R, Tolbert E, Mao H, Ponnusamy M, et al. A novel STAT3 inhibitor, S3I-201, attenuates renal interstitial fibroblast activation and interstitial fibrosis in obstructive nephropathy. Kidney Int. 2010;78(3): 257–68. doi: 10.1038/ki.2010.154 20520592

10. Liu C, Mei W, Tang J, Yuan Q, Huang L, Lu M, et al. Mefunidone attenuates tubulointerstitial fibrosis in a rat model of unilateral ureteral obstruction. PLoS One. 2015;10(6): e0129283. doi: 10.1371/journal.pone.0129283 26042668

11. Zhang L, Xu X, Yang R, Chen J, Wang S, Yang J, et al. Paclitaxel attenuates renal interstitial fibroblast activation and interstitial fibrosis by inhibiting STAT3 signaling. Drug Des Devel Ther. 2015;9: 2139–48. doi: 10.2147/DDDT.S81390 25931810

12. Park JS, Lee J, Lim MA, Kim EK, Kim SM, Ryu JG, et al. JAK2-STAT3 blockade by AG490 suppresses autoimmune arthritis in mice via reciprocal regulation of regulatory T Cells and Th17 cells. J Immunol. 2014;192(9): 4417–24. doi: 10.4049/jimmunol.1300514 24688026

13. Gilabert M, Calvo E, Airoldi A, Hamidi T, Moutardier V, Turrini O, et al. Pancreatic cancer-induced cachexia is Jak2-dependent in mice. J Cell Physiol. 2014;229(10): 1437–43. doi: 10.1002/jcp.24580 24648112

14. Gyurkovska V, Ivanovska N. Tyrosine kinase inhibitor tyrphostin AG490 reduces liver injury in LPS-induced shock. Eur J Pharmacol. 2015;751: 118–26. doi: 10.1016/j.ejphar.2015.01.045 25666385

15. Wang XL, Qiao CM, Liu JO, Li CY. Inhibition of the SOCS1-JAK2-STAT3 Signaling Pathway Confers Neuroprotection in Rats with Ischemic Stroke. Cell Physiol Biochem. 2017;44(1): 85–98. doi: 10.1159/000484585 29130998

16. Gent S, Skyschally A, Kleinbongard P, Heusch G. lschemic preconditioning in pigs: a causal role for signal transducer and activator of transcription 3. Am J Physiol Heart Circ Physiol. 2017;312(3): 478–84.

17. Zhang L, Lu P, Guo X, Liu T, Luo X, Zhu YT. Inhibition of JAK2/STAT3 signaling pathway protects mice from the DDP-induced acute kidney injury in lung cancer. Inflamm Res. 2019;68(9): 751–60. doi: 10.1007/s00011-019-01258-4 31250048

18. Zhou Y, Xu W, Zhu H. CXCL8(3–72) K11R/G31P protects against sepsis-induced acute kidney injury via NF-kappaB and JAK2/STAT3 pathway. 2019;52(1): 29. doi: 10.1186/s40659-019-0236-5 31084615

19. Neria F, Castilla MA, Sanchez RF, Gonzalez Pacheco FR, Deudero JJ, Calabia O, et al. Inhibition of JAK2 protects renal endothelial and epithelial cells from oxidative stress and cyclosporin A toxicity. Kidney Int. 2009;75(2): 227–34. doi: 10.1038/ki.2008.487 18818682

20. Si Y, Bao H, Han L, Shi H, Zhang Y, Xu L, et al. Dexmedetomidine protects against renal ischemia and reperfusion injury by inhibiting the JAK/STAT signaling activation. J Transl Med. 2013;11: 141. doi: 10.1186/1479-5876-11-141 23759023

21. Pena G, Cai B, Deitch EA, Ulloa L. JAK2 inhibition prevents innate immune responses and rescues animals from sepsis. J Mol Med (Berl). 2010;88(8): 851–9.

22. Yang N, Luo M, Li R, Huang Y, Zhang R, Wu Q, et al. Blockage of JAK/STAT signalling attenuates renal ischaemia-reperfusion injury in rat. Nephrol Dial Transplant. 2008;23(1): 91–100. doi: 10.1093/ndt/gfm509 17670769

23. Lacave R, Bens M, Cartier N, Vallet V, Robine S, Pringault E, et al. Functional properties of proximal tubule cell lines derived from transgenic mice harboring L-pyruvate kinase-SV40 (T) antigen hybrid gene. J Cell Sci. 1993;104 (Pt 3): 705–12.

24. Lange-Sperandio B, Fulda S, Vandewalle A, Chevalier RL. Macrophages induce apoptosis in proximal tubule cells. Pediatr Nephrol. 2003;18(4): 335–41. doi: 10.1007/s00467-003-1116-2 12700958

25. Kiley SC, Thornhill BA, Tang SS, Ingelfinger JR, Chevalier RL. Growth factor-mediated phosphorylation of proapoptotic BAD reduces tubule cell death in vitro and in vivo. Kidney Int. 2003;63(1): 33–42. doi: 10.1046/j.1523-1755.2003.00706.x 12472766

26. Kiley SC, Thornhill BA, Belyea BC, Neale K, Forbes MS, Luetteke NC, et al. Epidermal growth factor potentiates renal cell death in hydronephrotic neonatal mice, but cell survival in rats. Kidney Int. 2005;68(2): 504–14. doi: 10.1111/j.1523-1755.2005.00428.x 16014027

27. Lin Q, Lai R, Chirieac LR, Li C, Thomazy VA, Grammatikakis I, et al. Constitutive activation of JAK3/STAT3 in colon carcinoma tumors and cell lines: inhibition of JAK3/STAT3 signaling induces apoptosis and cell cycle arrest of colon carcinoma cells. Am J Pathol. 2005;167(4): 969–80. doi: 10.1016/S0002-9440(10)61187-X 16192633

28. Lange-Sperandio B, Trautmann A, Eickelberg O, Jayachandran A, Oberle S, Schmidutz F, et al. Leukocytes induce epithelial to mesenchymal transition after unilateral ureteral obstruction in neonatal mice. Am J Pathol. 2007;171(3): 861–71. doi: 10.2353/ajpath.2007.061199 17675578

29. Yang L, Besschetnova TY, Brooks CR, Shah JV, Bonventre JV. Epithelial cell cycle arrest in G2/M mediates kidney fibrosis after injury. Nat Med. 2010;16(5): 535–143. doi: 10.1038/nm.2144 20436483

30. Hu TY, Li LM, Pan YZ. CTRP3 inhibits high glucose-induced human glomerular mesangial cell dysfunction. 2019;120(4): 5729–36. doi: 10.1002/jcb.27859 30362596

31. Sergio M, Galarreta CI, Thornhill BA, Forbes MS, Chevalier RL. The Fate of Nephrons in Congenital Obstructive Nephropathy: Adult Recovery is Limited by Nephron Number Despite Early Release of Obstruction. J Urol. 2015;194(5): 1463–72. doi: 10.1016/j.juro.2015.04.078 25912494

32. Arany I, Megyesi JK, Nelkin BD, Safirstein RL. STAT3 attenuates EGFR-mediated ERK activation and cell survival during oxidant stress in mouse proximal tubular cells. Kidney Int. 2006;70(4): 669–74. doi: 10.1038/sj.ki.5001604 16788692

33. Kumar S. Cellular and molecular pathways of renal repair after acute kidney injury. Kidney Int. 2018;93(1): 27–40. doi: 10.1016/j.kint.2017.07.030 29291820

34. Duffield JS. Cellular and molecular mechanisms in kidney fibrosis. J Clin Invest. 2014;124(6): 2299–306. doi: 10.1172/JCI72267 24892703

35. Tveitaras MK, Skogstrand T, Leh S, Helle F, Iversen BM, Chatziantoniou C, et al. Matrix Metalloproteinase-2 Knockout and Heterozygote Mice Are Protected from Hydronephrosis and Kidney Fibrosis after Unilateral Ureteral Obstruction. PLoS One. 2015;10(12): e0143390. doi: 10.1371/journal.pone.0143390 26673451

36. Bienaime F, Muorah M, Yammine L, Burtin M, Nguyen C, Baron W, et al. Stat3 Controls Tubulointerstitial Communication during CKD. J Am Soc Nephrol. 2016;27(12): 3690–705. doi: 10.1681/ASN.2015091014 27153926

37. Liu J, Zhong Y, Liu G, Zhang X, Xiao B, Huang S, et al. Role of Stat3 Signaling in Control of EMT of Tubular Epithelial Cells During Renal Fibrosis. Cell Physiol Biochem. 2017;42(6): 2552–8. doi: 10.1159/000480216 28848189

38. Leung JY, Wilson HL, Voltzke KJ, Williams LA, Lee HJ, Wobker SE, et al. Sav1 Loss Induces Senescence and Stat3 Activation Coinciding with Tubulointerstitial Fibrosis. Mol Cell Biol. 2017;37(12): e00565–16. doi: 10.1128/MCB.00565-16 28320873

39. Yang R, Xu X, Li H, Chen J, Xiang X, Dong Z, et al. p53 induces miR199a-3p to suppress SOCS7 for STAT3 activation and renal fibrosis in UUO. Sci Rep. 2017;7: 43409. doi: 10.1038/srep43409 28240316

40. Yan Y, Ma L, Zhou X, Ponnusamy M, Tang J, Zhuang MA, et al. Src inhibition blocks renal interstitial fibroblast activation and ameliorates renal fibrosis. Kidney Int. 2016;89(1): 68–81. doi: 10.1038/ki.2015.293 26444028

41. Matsui F, Babitz SK, Rhee A, Hile KL, Zhang H, Meldrum KK. Mesenchymal stem cells protect against obstruction-induced renal fibrosis by decreasing STAT3 activation and STAT3-dependent MMP-9 production. Am J Physiol Renal Physiol. 2017;312(1): 25–32.

42. Seo HY, Jeon JH, Jung YA, Jung GS, Lee EJ, Choi YK, et al. Fyn deficiency attenuates renal fibrosis by inhibition of phospho-STAT3. Kidney Int. 2016;90(6): 1285–97. doi: 10.1016/j.kint.2016.06.038 27616741

43. Hamzeh MT, Sridhara R, Alexander LD. Cyclic stretch-induced TGF-beta1 and fibronectin expression is mediated by beta1-integrin through c-Src- and STAT3-dependent pathways in renal epithelial cells. Am J Physiol Renal Physiol. 2015;308(5): 425–36.


Článek vyšel v časopise

PLOS One


2019 Číslo 12