Analysis of 13,312 benthic invertebrate samples from German streams reveals minor deviations in ecological status class between abundance and presence/absence data

Autoři: Dominik Buchner aff001;  Arne J. Beermann aff001;  Alex Laini aff003;  Peter Rolauffs aff004;  Simon Vitecek aff005;  Daniel Hering aff002;  Florian Leese aff001
Působiště autorů: University of Duisburg-Essen, Aquatic Ecosystem Research, Essen, Germany aff001;  Centre for Water and Environmental Research (ZWU), Essen, Germany aff002;  University of Parma, Department of Chemistry, Life Sciences and Environmental Sustainability, Parma, Italy aff003;  University of Duisburg-Essen, Aquatic Ecology, Essen, Germany aff004;  WasserCluster Lunz, Lunz am See, Austria aff005;  University of Natural Resources Vienna, Wien, Austria aff006
Vyšlo v časopise: PLoS ONE 14(12)
Kategorie: Research Article


Benthic invertebrates are the most commonly used organisms used to assess ecological status as required by the EU Water Framework Directive (WFD). For WFD-compliant assessments, benthic invertebrate communities are sampled, identified and counted. Taxa × abundance matrices are used to calculate indices and the resulting scores are compared to reference values to determine the ecological status class. DNA-based tools, such as DNA metabarcoding, provide a new and precise method for species identification but cannot deliver robust abundance data. To evaluate the applicability of DNA-based tools to ecological status assessment, we evaluated whether the results derived from presence/absence data are comparable to those derived from abundance data. We analysed benthic invertebrate community data obtained from 13,312 WFD assessments of German streams. Broken down to 30 official stream types, we compared assessment results based on abundance and presence/absence data for the assessment modules “organic pollution” (i.e., the saprobic index) and “general degradation” (a multimetric index) as well as their underlying metrics.

In 76.6% of cases, the ecological status class did not change after transforming abundance data to presence/absence data. In 12% of cases, the status class was reduced by one (e.g., from good to moderate), and in 11.2% of cases, the class increased by one. In only 0.2% of cases, the status shifted by two classes. Systematic stream type-specific deviations were found and differences between abundance and presence/absence data were most prominent for stream types where abundance information contributed directly to one or several metrics of the general degradation module. For a single stream type, these deviations led to a systematic shift in status from ‘good’ to ‘moderate’ (n = 201; with only n = 3 increasing). The systematic decrease in scores was observed, even when considering simulated confidence intervals for abundance data. Our analysis suggests that presence/absence data can yield similar assessment results to those for abundance-based data, despite type-specific deviations. For most metrics, it should be possible to intercalibrate the two data types without substantial efforts. Thus, benthic invertebrate taxon lists generated by standardised DNA-based methods should be further considered as a complementary approach.

Klíčová slova:

Community ecology – Data processing – European Union – Fresh water – Invertebrates – Lakes – Pollution – Rivers


1. Birk S, Bonne W, Borja A, Brucet S, Courrat A, Poikane S, et al. Three hundred ways to assess Europe’s surface waters: An almost complete overview of biological methods to implement the Water Framework Directive. Ecol Indic. 2012;18: 31–41.

2. Nijboer RC, Johnson RK, Verdonschot PFM, Sommerhäuser M, Buffagni A. Establishing reference conditions for European streams. 2004;516: 15.

3. Poikane S, Zampoukas N, Borja A, Davies SP, van de Bund W, Birk S. Intercalibration of aquatic ecological assessment methods in the European Union: Lessons learned and way forward. Environ Sci Policy. 2014;44: 237–246. doi: 10.1016/j.envsci.2014.08.006

4. Hajibabaei M, Shokralla S, Zhou X, Singer GA, Baird DJ. Environmental barcoding: a next-generation sequencing approach for biomonitoring applications using river benthos. PloS One. 2011;6: e17497. doi: 10.1371/journal.pone.0017497 21533287

5. Taberlet P, Coissac E, Pompanon F, Brochmann C, Willerslev E. Towards next-generation biodiversity assessment using DNA metabarcoding. Mol Ecol. 2012;21: 2045–2050. doi: 10.1111/j.1365-294X.2012.05470.x 22486824

6. Zimmermann J, Glöckner G, Jahn R, Enke N, Gemeinholzer B. Metabarcoding vs. morphological identification to assess diatom diversity in environmental studies. Mol Ecol Resour. 2015;15: 526–542. doi: 10.1111/1755-0998.12336 25270047

7. Elbrecht V, Vamos EE, Meissner K, Aroviita J, Leese F. Assessing strengths and weaknesses of DNA metabarcoding-based macroinvertebrate identification for routine stream monitoring. Methods Ecol Evol. 2017;8: 1265–1275. doi: 10.1111/2041-210x.12789

8. Elbrecht V, Leese F. Can DNA-based ecosystem assessments quantify species abundance? Testing primer bias and biomass—sequence relationships with an innovative metabarcoding protocol. PloS One. 2015;10: e0130324. doi: 10.1371/journal.pone.0130324 26154168

9. Pinol J, Mir G, Gomez-Polo P, Agusti N. Universal and blocking primer mismatches limit the use of high-throughput DNA sequencing for the quantitative metabarcoding of arthropods. Mol Ecol Resour. 2015;15: 819–830. doi: 10.1111/1755-0998.12355 25454249

10. Hänfling B, Handley LL, Read DS, Hahn C, Li JL, Nichols P, et al. Environmental DNA metabarcoding of lake fish communities reflects long-term data from established survey methods. Mol Ecol. 2016;25: 3101–3119. doi: 10.1111/mec.13660 27095076

11. Bista I, Carvalho G, Tang M, Walsh K, Zhou X, Hajibabaei M, et al. Performance of amplicon and shotgun sequencing for accurate biomass estimation in invertebrate community samples. Mol Ecol Resour. 2018;online early. doi: 10.1111/1755-0998.12888 29667329

12. Kelly MG, Juggins S, Kille P, Mann D, Pass D, Sapp M, et al. A DNA based diatom metabarcoding approach for Water Framework Directive classification of rivers. Bristol: Environment Agency; 2018.

13. Vasselon V, Bouchez A, Rimet F, Jacques SMS, Trobajo R, Méline Corniquel, et al. Avoiding quantification bias in metabarcoding: Application of a cell biovolume correction factor in diatom molecular biomonitoring. Methods Ecol Evol. 2018;9: 1060–1069. doi: 10.1111/2041-210X.12960

14. Leese F, Bouchez A, Abarenkov K, Altermatt F, Borja Á, Bruce K, et al. Why We Need Sustainable Networks Bridging Countries, Disciplines, Cultures and Generations for Aquatic Biomonitoring 2.0: A Perspective Derived From the DNAqua-Net COST Action. Next Generation Biomonitoring: Part 1. 2018. pp. 63–99.

15. Leese F, Hering D, Wägele J-W. Potenzial genetischer Methoden für das Biomonitoring der Wasserrahmenrichtlinie. WasserWirtschaft. 2017;7–8: 49–53.

16. Hering D, Borja A, Jones JI, Pont D, Boets P, Bouchez A, et al. Implementation options for DNA-based identification into ecological status assessment under the European Water Framework Directive. Water Res. 2018;138: 192–205. doi: 10.1016/j.watres.2018.03.003 29602086

17. Wright‐Stow AE, Winterbourn MJ. How well do New Zealand’s stream‐monitoring indicators, the macroinvertebrate community index and its quantitative variant, correspond? N Z J Mar Freshw Res. 2003;37: 461–470. doi: 10.1080/00288330.2003.9517180

18. Beentjes KK, Speksnijder AGCL, Schilthuizen M, Schaub BEM, van der Hoorn BB. The influence of macroinvertebrate abundance on the assessment of freshwater quality in The Netherlands. Metabarcoding Metagenomics. 2018;2. doi: 10.3897/mbmg.2.26744

19. Aylagas E, Borja A, Rodriguez-Ezpeleta N. Environmental status assessment using DNA metabarcoding: towards a genetics based Marine Biotic Index (gAMBI). PloS One. 2014;9: e90529. doi: 10.1371/journal.pone.0090529 24603433

20. Meier C, Haase P, Rolauffs P, Schindehütte K, Schöll F, Sundermann A, et al. Methodisches Handbuch Fließgewässerbewertung. Handbuch zur Untersuchung und Bewertung von Fließgewässern auf der Basis des Makrozoobenthos vor dem Hintergrund der EG-Wasserrahmenrichtlinie.; 2006.

21. Böhmer J, Rawer-Jost C, Zenker A, Meier C, Feld CK, Biss R, et al. Assessing streams in Germany with benthic invertebrates: Development of a multimetric invertebrate based assessment system. Limnologica. 2004;34: 416–432. doi: 10.1016/S0075-9511(04)80010-0

22. ASTERICS. ASTERICS (AQEM/STAR Ecological River Classification System). Wageningen Software Labs; 2013. Available:

23. Pottgießer T, Sommerhäuser M. Fließgewässertypologie Deutschlands: Die Gewässertypen und ihre Steckbriefe als Beitrag zur Umsetzung der EU-Wasserrahmenrichtlinie. Handbuch der Limnologie. 2004. pp. 1–16.

24. Haase P, Pauls SU, Schindehutte K, Sundermann A. First audit of macroinvertebrate samples from an EU Water Framework Directive monitoring program: human error greatly lowers precision of assessment results. J North Am Benthol Soc. 2010;29: 1279–1291.

25. Elbrecht V, Steinke D. Scaling up DNA metabarcoding for freshwater macrozoobenthos monitoring. Freshw Biol. 2019;64: 380–387. doi: 10.1111/fwb.13220

26. Vivien R, Wyler S, Lafont M, Pawlowski J. Molecular barcoding of aquatic oligochaetes: implications for biomonitoring. PloS One. 2015;10: e0125485. doi: 10.1371/journal.pone.0125485 25856230

27. Beermann AJ, Zizka VMA, Elbrecht V, Baranov V, Leese F. DNA metabarcoding reveals the complex and hidden responses of chironomids to multiple stressors. Environ Sci Eur. 2018;30. doi: 10.1186/s12302-018-0157-x

28. Comtet T, Sandionigi A, Viard F, Casiraghi M. DNA (meta)barcoding of biological invasions: a powerful tool to elucidate invasion processes and help managing aliens. Biol Invasions. 2015;17: 905–922. doi: 10.1007/s10530-015-0854-y

29. Klymus KE, Marshall NT, Stepien CA. Environmental DNA (eDNA) metabarcoding assays to detect invasive invertebrate species in the Great Lakes. PLOS ONE. 2017;12: e0177643. doi: 10.1371/journal.pone.0177643 28542313

30. Weigand H, Beermann AJ, Čiampor F, Costa FO, Csabai Z, Duarte S, et al. DNA barcode reference libraries for the monitoring of aquatic biota in Europe: Gap-analysis and recommendations for future work. bioRxiv. 2019; 576553. doi: 10.1101/576553

31. Hallmann CA, Sorg M, Jongejans E, Siepel H, Hofland N, Schwan H, et al. More than 75 percent decline over 27 years in total flying insect biomass in protected areas. PLOS ONE. 2017;12: e0185809. doi: 10.1371/journal.pone.0185809 29045418

32. Seibold S, Gossner MM, Simons NK, Blüthgen N, Müller J, Ambarlı D, et al. Arthropod decline in grasslands and forests is associated with landscape-level drivers. Nature. 2019;574: 671–674. doi: 10.1038/s41586-019-1684-3 31666721

33. Cordier T, Esling P, Lejzerowicz F, Visco J, Ouadahi A, Martins C, et al. Predicting the ecological quality status of marine environments from eDNA metabarcoding data using supervised machine learning. Environ Sci Technol. 2017;51: 9118–9126. doi: 10.1021/acs.est.7b01518 28665601

34. Cordier T, Forster D, Dufresne Y, Martins CIM, Stoeck T, Pawlowski J. Supervised machine learning outperforms taxonomy-based environmental DNA metabarcoding applied to biomonitoring. Mol Ecol Resour. 2018;18: 1381–1391. doi: 10.1111/1755-0998.12926 30014577

35. Cordier T, Lanzén A, Apotheloz-Perret-Gentil L, Stoeck T, Pawlowski J. Embracing environmental genomics and machine learning for routine biomonitoring. Trends Microbiol. 2018;online early. doi: 10.1016/j.tim.2018.10.012

36. Pawlowski J, Kelly-Quinn M, Altermatt F, Apotheloz-Perret-Gentil L, Beja P, Boggero A, et al. The future of biotic indices in the ecogenomic era: Integrating (e)DNA metabarcoding in biological assessment of aquatic ecosystems. Sci Total Env. 2018;637–638: 1295–1310. doi: 10.1016/j.scitotenv.2018.05.002 29801222

37. Weigand H, Beermann AJ, Čiampor F, Costa FO, Csabai Z, Duarte S, et al. DNA barcode reference libraries for the monitoring of aquatic biota in Europe: Gap-analysis and recommendations for future work. Sci Total Environ. 2019;678: 499–524. doi: 10.1016/j.scitotenv.2019.04.247 31077928

38. Bailet B, Bouchez A, Franc A, Frigerio J-M, Keck F, Karjalainen S-M, et al. Molecular versus morphological data for benthic diatoms biomonitoring in Northern Europe freshwater and consequences for ecological status. Metabarcoding Metagenomics. 2019;3: e34002. doi: 10.3897/mbmg.3.34002

39. Aylagas E, Borja Á, Muxika I, Rodríguez-Ezpeleta N. Adapting metabarcoding-based benthic biomonitoring into routine marine ecological status assessment networks. Ecol Indic. 2018;95: 194–202. doi: 10.1016/j.ecolind.2018.07.044

40. Raitoharju J, Riabchenko E, Ahmad I, Iosifidis A, Gabbouj M, Kiranyaz S, et al. Benchmark database for fine-grained image classification of benthic macroinvertebrates. Image Vis Comput. 2018;78: 73–83. doi: 10.1016/j.imavis.2018.06.005

41. Elbrecht V, Vamos EE, Steinke D, Leese F. Estimating intraspecific genetic diversity from community DNA metabarcoding data. PeerJ. 2018;6.

Článek vyšel v časopise


2019 Číslo 12
Nejčtenější tento týden