Vitamin E TPGS based transferosomes augmented TAT as a promising delivery system for improved transdermal delivery of raloxifene


Autoři: Nabil A. Alhakamy aff001;  Usama A. Fahmy aff001;  Osama A. A. Ahmed aff001
Působiště autorů: Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia aff001;  Department of Pharmaceutics & Industrial Pharmacy, Faculty of Pharmacy, Minia University, Minia, Egypt aff002
Vyšlo v časopise: PLoS ONE 14(12)
Kategorie: Research Article
doi: 10.1371/journal.pone.0226639

Souhrn

Raloxifene is commonly used for breast cancer protection. The low bioavailability of raloxifene (2%) is the result of its low solubility and intestinal glucuronidation. The nano-lipid carriers are characterized by small particle size, biocompatibility, and sustainable properties that improve cellular uptake of the loaded drug. The aim of this study was the improvement of raloxifene bioavailability by enhancing its solubility and cellular penetration through formulation of D-α-tocopheryl polyethylene glycol 1000 succinate based transferosomes and augmenting their effect with the cationic cell-penetrating peptide transactivator of transcription of the human immunodeficiency virus. Particle size, zeta potential, and transmission electron microscope investigation of the formed nanocarriers were carried out. Ex vivo raloxifene permeation through rat skin and cell viability studies was investigated. The results of D-α-tocopheryl polyethylene glycol 1000 succinate- transactivator of transcription of the human immunodeficiency virus transferosomes showed an average vesicle size of 96.05 nm with positively charged vesicles 39.4 mV of zeta potential value. The results revealed significant (p < 0.05) enhancement of raloxifene permeation from raloxifene transferosomes- loaded film when compared with raw raloxifene film. IC50 results showed significant improvement of formulated raloxifene cytotoxicity by 1.42-fold in comparison with raw raloxifene against MCF-7 cell lines. The developed raloxifene—transferosomes are considered promising nano-lipid carriers for the enhancement delivery of raloxifene.

Klíčová slova:

Cytotoxicity – Drug delivery – Estrogens – Fluorescence microscopy – Nanoparticles – Solubility – Vesicles – Transdermal drug delivery


Zdroje

1. Delmas PD, Bjarnason NH, Mitlak BH, Ravoux A-C, Shah AS, Huster WJ, et al. Effects of Raloxifene on Bone Mineral Density, Serum Cholesterol Concentrations, and Uterine Endometrium in Postmenopausal Women. N Engl J Med. 1997;337: 1641–1647. doi: 10.1056/NEJM199712043372301 9385122

2. Ettinger B, Black DM, Mitlak BH, Knickerbocker RK, Nickelsen T, Genant HK, et al. Reduction of vertebral fracture risk in postmenopausal women with osteoporosis treated with raloxifene: results from a 3-year randomized clinical trial. Multiple Outcomes of Raloxifene Evaluation (MORE) Investigators. JAMA. 1999;282: 637–45. doi: 10.1001/jama.282.7.637 10517716

3. Cummings SR, Eckert S, Krueger KA, Grady D, Powles TJ, Cauley JA, et al. The effect of raloxifene on risk of breast cancer in postmenopausal women: results from the MORE randomized trial. Multiple Outcomes of Raloxifene Evaluation. JAMA. 1999;281: 2189–97. doi: 10.1001/jama.281.23.2189 10376571

4. Muchmore DB. Raloxifene: A selective estrogen receptor modulator (SERM) with multiple target system effects. Oncologist. 2000;5: 388–92. doi: 10.1634/theoncologist.5-5-388 11040275

5. Ahmed OAA, Badr-Eldin SM. In situ misemgel as a multifunctional dual-absorption platform for nasal delivery of raloxifene hydrochloride: formulation, characterization, and in vivo performance. Int J Nanomedicine. 2018;Volume 13: 6325–6335. doi: 10.2147/IJN.S181587 30349253

6. Chen Y, Jia X, Chen J, Wang J, Hu M. The Pharmacokinetics of Raloxifene and Its Interaction with Apigenin in Rat. 2010; 8478–8487. doi: 10.3390/molecules15118478 21088662

7. Wiedersberg S, Guy RH. Transdermal drug delivery: 30 + years of war and still fighting! Journal of Controlled Release. Elsevier B.V.; 2014. pp. 150–156. doi: 10.1016/j.jconrel.2014.05.022 24852092

8. Mahmood S, Taher M, Mandal UK umar. Experimental design and optimization of raloxifene hydrochloride loaded nanotransfersomes for transdermal application. Int J Nanomedicine. 2014;9: 4331–4346. doi: 10.2147/IJN.S65408 25246789

9. Thakkar H P., Savsani H, Kumar P. Ethosomal Hydrogel of Raloxifene HCl: Statistical Optimization & Ex Vivo Permeability Evaluation Across Microporated Pig Ear Skin. Curr Drug Deliv. 2016;13: 1111–1122. doi: 10.2174/1567201813666160120151816 26787414

10. Nagai N, Ogata F, Otake H, Nakazawa Y, Kawasaki N. Design of a transdermal formulation containing raloxifene nanoparticles for osteoporosis treatment. Int J Nanomedicine. 2018;13: 5215–5229. doi: 10.2147/IJN.S173216 30233182

11. Mahmood S, Mandal UK, Chatterjee B. Transdermal delivery of raloxifene HCl via ethosomal system: Formulation, advanced characterizations and pharmacokinetic evaluation. Int J Pharm. 2018; doi: 10.1016/j.ijpharm.2018.02.044 29501737

12. Ahmed OAA, Ahmed TA, Abdel-Naim AB, Khedr A, Banjar ZM, Afouna MI. Enhancement of in vitro skin transport and in vivo hypoglycemic efficacy of glimepiride transdermal patches. Trop J Pharm Res. 2014;13: 1207–1213. doi: 10.4314/tjpr.v13i8.3

13. Alexander A, Dwivedi S, Ajazuddin, Giri TK, Saraf S, Saraf S, et al. Approaches for breaking the barriers of drug permeation through transdermal drug delivery. Journal of Controlled Release. 2012. pp. 26–40. doi: 10.1016/j.jconrel.2012.09.017 23064010

14. Subedi RK, Oh SY, Chun MK, Choi HK. Recent advances in transdermal drug delivery. Archives of Pharmacal Research. 2010. pp. 339–351. doi: 10.1007/s12272-010-0301-7 20361297

15. Ahmed OA, Rizg WY. Finasteride nano-transferosomal gel formula for management of androgenetic alopecia: ex vivo investigational approach. Drug Des Devel Ther. 2018;Volume 12: 2259–2265. doi: 10.2147/DDDT.S171888 30104862

16. Chen J, Lu W-L, Gu W, Lu S-S, Chen Z-P, Cai B-C. Skin permeation behavior of elastic liposomes: role of formulation ingredients. Expert Opin Drug Deliv. 2013;10: 845–856. doi: 10.1517/17425247.2013.779252 23550630

17. Kim DE, Kim Y, Cho D-H, Jeong S-Y, Kim S-B, Suh N, et al. Raloxifene Induces Autophagy-Dependent Cell Death in Breast Cancer Cells via the Activation of AMP-Activated Protein Kinase. Mol Cells. 2015;38: 138–144. doi: 10.14348/molcells.2015.2193 25537862

18. Pritchard T, Rosengren RJ, Greish K, Taurin S. Raloxifene nanomicelles reduce the growth of castrate-resistant prostate cancer. J Drug Target. 2016;24: 441–449. doi: 10.3109/1061186X.2015.1086360 26373825

19. Ahmed OAA, El-Say KM, Aljaeid BM, Badr-Eldin SM, Ahmed TA. Optimized vinpocetine-loaded vitamin E D-α-tocopherol polyethylene glycol 1000 succinate-alpha lipoic acid micelles as a potential transdermal drug delivery system: in vitro and ex vivo studies. Int J Nanomedicine. 2018;Volume 14: 33–43. doi: 10.2147/IJN.S187470 30587983

20. Badr-Eldin SM, Ahmed OAA. Optimized nano-transfersomal films for enhanced sildenafil citrate transdermal delivery: Ex vivo and in vivo evaluation. Drug Des Devel Ther. 2016;10: 1323–1333. doi: 10.2147/DDDT.S103122 27103786

21. Fahmy UA, Ahmed OA, Hosny K. Development and Evaluation of Avanafil Self-nanoemulsifying Drug Delivery System with Rapid Onset of Action and Enhanced Bioavailability. AAPS PharmSciTech. 2014;16. doi: 10.1208/s12249-014-0199-3 25168449

22. Desai P, Patlolla RR, Singh M. Interaction of nanoparticles and cell-penetrating peptides with skin for transdermal drug delivery. Mol Membr Biol. 2010;27: 247–59. doi: 10.3109/09687688.2010.522203 21028936

23. Park D, Lee JY, Cho HK, Hong WJ, Kim J, Seo H, et al. Cell-Penetrating Peptide-Patchy Deformable Polymeric Nanovehicles with Enhanced Cellular Uptake and Transdermal Delivery. Biomacromolecules. 2018;19: 2682–2690. doi: 10.1021/acs.biomac.8b00292 29847726

24. El-Say KM, Ahmed TA, Badr-Eldin SM, Fahmy U, Aldawsari H, Ahmed OAA. Enhanced permeation parameters of optimized nanostructured simvastatin transdermal films: Ex Vivo and In Vivo evaluation. Pharm Dev Technol. 2015;20: 919–926. doi: 10.3109/10837450.2014.938859 25019166

25. Goindi S, Kumar G, Kumar N, Kaur A. Development of Novel Elastic Vesicle-Based Topical Formulation of Cetirizine Dihydrochloride for Treatment of Atopic Dermatitis. AAPS PharmSciTech. 2013;14: 1284–1293. doi: 10.1208/s12249-013-0017-3 23959702

26. Ahmed TA, El-Say KM, Aljaeid BM, Fahmy UA, Abd-Allah FI. Transdermal glimepiride delivery system based on optimized ethosomal nano-vesicles: Preparation, characterization, in vitro, ex vivo and clinical evaluation. Int J Pharm. 2016;500: 245–254. doi: 10.1016/j.ijpharm.2016.01.017 26775063

27. Ahmed OAA, Afouna MI, El-Say KM, Abdel-Naim AB, Khedr A, Banjar ZM. Optimization of self-nanoemulsifying systems for the enhancement of in vivo hypoglycemic efficacy of glimepiride transdermal patches. Expert Opin Drug Deliv. 2014;11. doi: 10.1517/17425247.2014.906402 24702435

28. Seo J, Kim S, Kim B. In vitro skin absorption tests of three types of parabens using a Franz diffusion cell. 2016;27: 320–325. doi: 10.1038/jes.2016.33 27436697

29. Br A. In vitro skin permeation of artemisone and its nano- vesicular formulations. Int J Pharm. 2016; doi: 10.1016/j.ijpharm.2016.02.041 26930566

30. Zidan AS, Hosny KM, Ahmed OAA, Fahmy UA. Assessment of simvastatin niosomes for pediatric transdermal drug delivery. Drug Deliv. 2016;23. doi: 10.3109/10717544.2014.980896 25386740

31. Basavaiah K, Kumar URA, Tharpa K. Gradient HPLC analysis of raloxifene hydrochloride and its application to drug quality control. Acta Pharm. 2008;58: 347–356. doi: 10.2478/v10007-008-0018-z 19103571

32. Fahmy U. Nanoethosomal transdermal delivery of vardenafil for treatment of erectile dysfunction: optimization, characterization, and in vivo evaluation. Drug Des Devel Ther. 2015;9: 6129. doi: 10.2147/DDDT.S94615 26604700

33. Fahmy UA, Aljaeid BM. Combined strategy for suppressing breast carcinoma MCF-7 cell lines by loading simvastatin on alpha lipoic acid nanoparticles. Expert Opin Drug Deliv. 2016;0. doi: 10.1080/17425247.2016.1236788 27636370

34. Tahirov TH, Babayeva ND, Varzavand K, Cooper JJ, Sedore SC, Price DH. Crystal structure of HIV-1 Tat complexed with human P-TEFb. Nature. 2010;465: 747–751. doi: 10.1038/nature09131 20535204

35. Vachon CM, Schaid DJ, Ingle JN, Wickerham DL, Kubo M, Mushiroda T, et al. A polygenic risk score for breast cancer in women receiving tamoxifen or raloxifene on NSABP P-1 and P-2. Breast Cancer Res Treat. 2015;149: 517–523. doi: 10.1007/s10549-014-3175-4 25575444

36. Hartauer KJ, Arbuthnot GN, Baertschi SW, Johnson RA, Luke WD, Pearson NG, et al. Influence of peroxide impurities in povidone and crospovidone on the stability of raloxifene hydrochloride in tablets: identification and control of an oxidative degradation product. Pharm Dev Technol. 2000;5: 303–10. doi: 10.1081/pdt-100100545 10934729

37. Guo Y, Luo J, Tan S, Otieno BO, Zhang Z. The applications of Vitamin E TPGS in drug delivery. Eur J Pharm Sci. 2013;49: 175–186. doi: 10.1016/j.ejps.2013.02.006 23485439

38. Dintaman JM, Silverman JA. Inhibition of P-glycoprotein by D-alpha-tocopheryl polyethylene glycol 1000 succinate (TPGS). Pharm Res. 1999;16: 1550–6. doi: 10.1023/a:1015000503629 10554096

39. Skazik C, Wenzel J, Marquardt Y, Kim A, Merk HF, Bickers DR, et al. P-Glycoprotein (ABCB1) expression in human skin is mainly restricted to dermal components. Experimental Dermatology. 2011. pp. 450–452. doi: 10.1111/j.1600-0625.2010.01237.x 21366702

40. Benson HA. Transfersomes for transdermal drug delivery. Expert Opin Drug Deliv. 2006;3: 727–737. doi: 10.1517/17425247.3.6.727 17076595

41. Lönn P, Kacsinta AD, Cui XS, Hamil AS, Kaulich M, Gogoi K, et al. Enhancing Endosomal Escape for Intracellular Delivery of Macromolecular Biologic Therapeutics. Sci Rep. 2016;6: 32301. doi: 10.1038/srep32301 27604151

42. Kalluri R. EMT: when epithelial cells decide to become mesenchymal-like cells. J Clin Invest. 2009;119. doi: 10.1172/JCI39675 19487817


Článek vyšel v časopise

PLOS One


2019 Číslo 12