Dipole-wind interactions under gap wind jet conditions in the Gulf of Tehuantepec, Mexico: A surface drifter and satellite database analysis


Autoři: Mauro W. Santiago-García aff001;  Alejandro F. Parés-Sierra aff001;  Armando Trasviña aff002
Působiště autorů: Department of Physical Oceanography, CICESE, Ensenada, Baja California, Mexico aff001;  CICESE, Unidad La Paz, La Paz, Baja California Sur, Mexico aff002
Vyšlo v časopise: PLoS ONE 14(12)
Kategorie: Research Article
doi: 10.1371/journal.pone.0226366

Souhrn

Gap wind jets (Tehuano winds) trigger supersquirts of colder water and mesoscale asymmetric dipoles in the Gulf of Tehuantepec (GT). However, the effects of successive gap wind jets on dipoles and their effects inside eddies have not yet been studied. Based on the wind fields, geostrophic currents, and surface drifter dispersion, this research documented three dipoles triggered and modified by Tehuano winds. Once a dipole develops, successive gap wind jets strengthen the vortices, and the anticyclonic eddy migrates southwestward while the cyclonic eddy is maintained on the east side of the GT. During the wind relaxation stage, the cyclonic eddy may propagate westward, but due to the subsequent re-intensification of the Tehuano winds, the vortex could break down, as was suggested by surface drifter dispersion pattern and geostrophic field data. The effect of the Tehuano winds was evaluating via eddy-Ekman pumping. Under Tehuano wind conditions, Ekman downwelling (upwelling) inside the anticyclonic (cyclonic) eddies may reach ~ -2.0 (0.5) m d-1 and decrease as the wind weakens. In the absence of Tehuano winds, Ekman downwelling inside the anticyclonic eddy was ~ 0.1 (-0.1) m d-1. The asymmetry of downwelling and upwelling inside eddies during Tehuano wind events may be associated with Tehuano wind forcing.

Klíčová slova:

Ellipses – Image processing – Oceans – Velocity – Wind – Wind power – Gulfs – Dipole-dipole interactions


Zdroje

1. Stumpf HG, Legeckis R V. Satellite Observations of Mesoscale Eddy Dynamics in the Eastern Tropical Pacific Ocean. Vol. 7, Journal of Physical Oceanography. 1977. p. 648–58.

2. Stumpf HG. Upwelling Gulf of Tehuantepec, Mexico. J Phys Oceanogr. 1975;5:383–8.

3. Barton ED, Argote M, Brown J, Kosro M, Lavin M, Robles J, et al. Supersquirt: Dynamics of the Gulf of Tehuantepec, Mexico. Oceanography. 1993;6(1):23–30.

4. Trasviña A, Barton ED, Brown J, Velez HS, Kosro PM, Smith RL. Offshore wind forcing in the Gulf of Tehuantepec, Mexico: The asymmetric circulation. J Geophys Res [Internet]. 1995;100(C10):20649–63. Available from: http://dx.doi.org/10.1029/95JC01283

5. Steenburgh WJ, Schultz DM, Colle B a. The Structure and Evolution of Gap Outflow over the Gulf of Tehuantepec, Mexico. Mon Weather Rev. 1998;126:2673–91.

6. Chelton DB, Freilich MH, Esbensen SK. Satellite Observations of the Wind Jets off the Pacific Coast of Central America. Part I: Case Studies and Statistical Characteristics. Mon Weather Rev [Internet]. 2000 Jul 1;128(7):1993–2018. Available from: https://doi.org/10.1175/1520-0493(2000)128%3C1993:SOOTWJ%3E2.0.CO

7. Romero-Centeno R, Zavala-Hidalgo J, Raga GB. Midsummer gap winds and low-level circulation over the eastern tropical Pacific. J Clim. 2007;20(15):3768–84.

8. Romero-Centeno R, Zavala-Hidalgo J, Gallegos A, O’Brien JJ. Isthmus of tehuantepec wind climatology and ENSO signal. J Clim. 2003;16(15):2628–39.

9. Flores-Vidal X, Durazo R, Chavanne C, Flament P. Coastal circulation in the absence of wind in the Gulf of Tehuantepec, Mexico: High-frequency radar observations. Ciencias Mar. 2011;37(2011):493–512.

10. Trasviña A, Barton ED. Summer circulation in the Mexican tropical Pacific. Deep Res Part I Oceanogr Res Pap. 2008;55(5):587–607.

11. Liang JH, McWilliams JC, Kurian J, Colas F, Wang P, Uchiyama Y. Mesoscale variability in the northeastern tropical Pacific: Forcing mechanisms and eddy properties. J Geophys Res Ocean. 2012;117(7):1–13.

12. Willett CS, Leben RR, Lavín MF. Eddies and Tropical Instability Waves in the eastern tropical Pacific: A review. Prog Oceanogr. 2006;69(2–4):218–38.

13. Zamudio L, Hurlburt HE, Metzger EJ, Morey SL, O’Brien JJ, Tilburg C, et al. Interannual variability of Tehuantepec eddies. J Geophys Res Ocean. 2006;111(December 2005):1–21.

14. Amador J a, Alfaro EJ, Lizano OG, Magaña VO. Atmospheric forcing of the eastern tropical Pacific: A review. Prog Oceanogr. 2006;69:101–42.

15. Müller-Karger FE, Fuentes-Yaco C. Characteristics of wind-generated rings in the eastern tropical Pacific Ocean. J Geophys Res. 2000;105(C1):1271.

16. Gonzalez-Silvera A, Santamaria-Del-Angel E, Millán-Nuñez R, Manzo-Monroy H. Satellite observations of mesoscale eddies in the Gulfs of Tehuantepec and Papagayo (Eastern Tropical Pacific). Deep Res Part II Top Stud Oceanogr. 2004;51(6–9):587–600.

17. Palacios DM, Bograd SJ, Foley DG, Schwing FB. Oceanographic characteristics of biological hot spots in the North Pacific: A remote sensing perspective. Deep Res Part II Top Stud Oceanogr. 2006;53(3–4):250–69.

18. McCreary JP, Lee HS, Enfield DB. The response of the coastal ocean to strong offshore winds: With application to circulations in the Gulfs of Tehuantepec and Papagayo. J Mar Res. 1989;47(1):81–109.

19. Barton ED, Lavín MF, Trasviña A. Coastal circulation and hydrography in the Gulf of Tehuantepec, Mexico, during winter. Cont Shelf Res. 2009;29(2):485–500.

20. Velazquez-Muñoz FA, Martínez JA, Durazo R. Numerical Simulation of Ocean Response by Offshore Wind Stress Events. In: Klapp J, Medina A, editors. Experimental and Computational Fluid Mechanics [Internet]. Cham: Springer International Publishing; 2014. p. 93–110. Available from: https://doi.org/10.1007/978-3-319-00116-6_7

21. Färber-Lorda J, Lavin MF, Zapatero MA, Robles JM. Distribution and abundance of euphausiids in the gulf of tehuantepec during wind forcing. Deep Res Part I. 1994;41(2):359–67.

22. Färber-Lorda J, Lavín MF, Guerrero-Ruiz M a. Effects of wind forcing on the trophic conditions, zooplankton biomass and krill biochemical composition in the Gulf of Tehuantepec. Deep Res Part II Top Stud Oceanogr. 2004;51:601–14.

23. Robles-jarero EG, Lara-lara JR. Phytoplankton biomass and primary productivity by size classes in the Gulf of Tehuantepec, M??xico. J Plankton Res. 1993;15(12):1341–58.

24. Chapa-Balcorta C, Hernandez-Ayon JM, Durazo R, Beier E, Alin SR, López-Pérez A. Influence of post-Tehuano oceanographic processes in the dynamics of the CO2 system in the Gulf of Tehuantepec, Mexico. J Geophys Res Ocean [Internet]. 2015;120(12):7752–70. Available from: http://dx.doi.org/10.1002/2015JC011249

25. Nencioli F, Dong C, Dickey T, Washburn L, Mcwilliams JC. A vector geometry-based eddy detection algorithm and its application to a high-resolution numerical model product and high-frequency radar surface velocities in the Southern California Bight. J Atmos Ocean Technol. 2010;27(3):564–79.

26. Atlas R, Hoffman RN, Ardizzone J, Leidner SM, Jusem JC, Smith DK, et al. A cross-calibrated, multiplatform ocean surface wind velocity product for meteorological and oceanographic applications. Bull Am Meteorol Soc. 2011;92(2):157–74.

27. Sudre J, Maes C, Garçon V. On the global estimates of geostrophic and Ekman surface currents. Limnol Oceanogr Fluids Environ [Internet]. 2013;3(1):1–20. Available from: http://doi.wiley.com/10.1215/21573689-2071927

28. Sudre J, Morrow RA. Global surface currents: A high-resolution product for investigating ocean dynamics. Ocean Dyn. 2008;58(2):101–18.

29. Hansen D V, Poulain P-M. Quality Control and Interpolations of WOCE-TOGA Drifter Data. J Atmos Ocean Technol [Internet]. 1996 Aug 1;13(4):900–9. Available from: https://doi.org/10.1175/1520-0426(1996)013%3C0900:QCAIOW%3E2.0.CO

30. Chang CH, Xie SP, Schneider N, Qiu B, Small J, Zhuang W, et al. East Pacific ocean eddies and their relationship to subseasonal variability in Central American wind jets. J Geophys Res Ocean. 2012;117(10):1–20.

31. Mahadevan A, Thomas LN, Tandon A. Comment on “Eddy/Wind Interactions Stimulate Extraordinary Mid-Ocean Plankton Blooms.” Science (80-) [Internet]. 2008 Apr 25;320(5875):448b–448b. Available from: http://www.sciencemag.org/cgi/doi/10.1126/science.1152111

32. Stern ME. Interaction of a uniform wind stress with a geostrophic vortex. Deep Res. 1965;12(November 1964):355–67.

33. Gaube P, Chelton DB, Samelson RM, Schlax MG, O’Neill LW. Satellite Observations of Mesoscale Eddy-Induced Ekman Pumping. J Phys Oceanogr [Internet]. 2015;45(1):104–32. Available from: http://journals.ametsoc.org/doi/10.1175/JPO-D-14-0032.1

34. Ocampo-Torres FJ, García-Nava H, Durazo R, Osuna P, Díaz Méndez GM, Graber HC. The INTOA Experiment: A Study of Ocean-Atmosphere Interactions Under Moderate to Strong Offshore Winds and Opposing Swell Conditions in the Gulf of Tehuantepec, Mexico. Boundary-Layer Meteorol. 2011;138(3):433–51.

35. McGillicuddy DJ. Formation of Intrathermocline Lenses by Eddy–Wind Interaction. J Phys Oceanogr [Internet]. 2015;45(2):606–12. Available from: http://journals.ametsoc.org/doi/10.1175/JPO-D-14-0221.1

36. Martin AP, Richards KJ. Mechanisms for vertical nutrient transport within a North Atlantic mesoscale eddy. Deep Res Part II Top Stud Oceanogr. 2001;48(4–5):757–73.

37. Mcgillicuddy DJ. Eddy / Wind Interactions Stimulate Mid-Ocean Plankton Blooms. Science (80-). 2007;1021(May):1021–7.

38. Dewar WK, Flierl GR. Some Effects of the Wind on Rings [Internet]. Vol. 17, Journal of Physical Oceanography. 1987. p. 1653–67. Available from: http://journals.ametsoc.org/doi/abs/10.1175/1520-0485%281987%29017%3C1653%3ASEOTWO%3E2.0.CO%3B2

39. Li J, Qi Y, Jing Z, Wang J. Enhancement of eddy-Ekman pumping inside anticyclonic eddies with wind-parallel extension: Satellite observations and numerical studies in the South China Sea. J Mar Syst [Internet]. 2014;132:150–61. Available from: http://dx.doi.org/10.1016/j.jmarsys.2014.02.002

40. Clarke AJ. Inertial wind path and sea surface temperature patterns near the Gulf of Tehuantepec and Gulf of Papagayo. J Geophys Res Ocean. 1988;93(C12).

41. Cushman-Roisin B. Introduction to Geophysical Fluid Dynamics [Internet]. Prentice Hall; 1994. Available from: https://books.google.com.mx/books?id = nL8RAQAAIAAJ

42. Velázquez-Muñoz F1, *, Martínez JA1, Chavanne C2, 3, Durazo1 PF R. Wind-driven coastal circulation in the Gulf of Tehuantepec, Mexico. Ciencias Mar. 2011;37:443–56.

43. Dong C, Lin X, Liu Y, Nencioli F, Chao Y, Guan Y, et al. Three-dimensional oceanic eddy analysis in the Southern California Bight from a numerical product. J Geophys Res Ocean. 2012;117(1):1–17.

44. Hong X, Peng M, Wang S, Wang Q. Simulating and understanding the gap outflow and oceanic response over the Gulf of Tehuantepec during GOTEX. Dyn Atmos Ocean [Internet]. 2018;82:1–19. Available from: http://www.sciencedirect.com/science/article/pii/S0377026517300969

45. Amedo-Repollo CL, Flores-Vidal X, Chavanne C, Villanoy CL, Flament P. Low-Frequency Surface Currents and Generation of an Island Lee Eddy in Panay Island, Philippines. J Phys Oceanogr [Internet]. 2019;49(3):765–87. Available from: https://doi.org/10.1175/JPO-D-17-0191.1

46. Renault L, Molemaker MJ, McWilliams JC, Shchepetkin AF, Lemarié F, Chelton D, et al. Modulation of Wind Work by Oceanic Current Interaction with the Atmosphere. J Phys Oceanogr [Internet]. 2016;46(6):1685–704. Available from: http://journals.ametsoc.org/doi/10.1175/JPO-D-15-0232.1

47. Seo H, Miller AJ, Norris JR. Eddy–Wind Interaction in the California Current System: Dynamics and Impacts. J Phys Oceanogr [Internet]. 2016;46(2):439–59. Available from: http://journals.ametsoc.org/doi/10.1175/JPO-D-15-0086.1


Článek vyšel v časopise

PLOS One


2019 Číslo 12