A new finite element based parameter to predict bone fracture


Autoři: Chiara Colombo aff001;  Flavia Libonati aff001;  Luca Rinaudo aff002;  Martina Bellazzi aff001;  Fabio Massimo Ulivieri aff003;  Laura Vergani aff001
Působiště autorů: Department of Mechanical Engineering, Politecnico di Milano, Milano, Italy aff001;  TECHNOLOGIC S.r.l. Hologic Italia, Lungo Dora Voghera, Torino, Italy aff002;  Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Nuclear Medicine-Bone Metabolic Unit, Milano, Italy aff003
Vyšlo v časopise: PLoS ONE 14(12)
Kategorie: Research Article
doi: 10.1371/journal.pone.0225905

Souhrn

Dual Energy X-Ray Absorptiometry (DXA) is currently the most widely adopted non-invasive clinical technique to assess bone mineral density and bone mineral content in human research and represents the primary tool for the diagnosis of osteoporosis. DXA measures areal bone mineral density, BMD, which does not account for the three-dimensional structure of the vertebrae and for the distribution of bone mass. The result is that longitudinal DXA can only predict about 70% of vertebral fractures. This study proposes a complementary tool, based on Finite Element (FE) models, to improve the DXA accuracy. Bone is simulated as elastic and inhomogeneous material, with stiffness distribution derived from DXA greyscale images of density. The numerical procedure simulates a compressive load on each vertebra to evaluate the local minimum principal strain values. From these values, both the local average and the maximum strains are computed over the cross sections and along the height of the analysed bone region, to provide a parameter, named Strain Index of Bone (SIB), which could be considered as a bone fragility index. The procedure is initially validated on 33 cylindrical trabecular bone samples obtained from porcine lumbar vertebrae, experimentally tested under static compressive loading. Comparing the experimental mechanical parameters with the SIB, we could find a higher correlation of the ultimate stress, σULT, with the SIB values (R2adj = 0.63) than that observed with the conventional DXA-based clinical parameters, i.e. Bone Mineral Density, BMD (R2adj = 0.34) and Trabecular Bone Score, TBS (R2adj = -0.03). The paper finally presents a few case studies of numerical simulations carried out on human lumbar vertebrae. If our results are confirmed in prospective studies, SIB could be used—together with BMD and TBS—to improve the fracture risk assessment and support the clinical decision to assume specific drugs for metabolic bone diseases.

Klíčová slova:

Bone and mineral metabolism – Bone fracture – Bone imaging – Grayscale – Spine – Stiffness – Vertebrae


Zdroje

1. McDonnell P, McHugh PE, O’Mahoney D. Vertebral osteoporosis and trabecular bone quality. Ann Biomed Eng. 2007;35: 170–189. doi: 10.1007/s10439-006-9239-9 17171508

2. Sözen T, Özşk L, Başaran NÇÇ. An overview and management of osteoporosis. Eur J Rheumatol. 2017;4: 46–56. Available: http://view.ncbi.nlm.nih.gov/pubmed/28293453 doi: 10.5152/eurjrheum.2016.048

3. Kanis JA, Cooper C, Rizzoli R, Reginster JY. European guidance for the diagnosis and management of osteoporosis in postmenopausal women. Osteoporos Int. 2019;30: 3–44. doi: 10.1007/s00198-018-4704-5 30324412

4. Riggs BL, Melton LJ. The worldwide problem of osteoporosis: Insights afforded by epidemiology. Bone. 1995;17. doi: 10.1016/8756-3282(95)00258-4

5. NIH Consensus Development Panel. Osteoporosis Prevention, Diagnosis, and Therapy. Jama. 2001;285: 785–795. doi: 10.1001/jama.285.6.785 11176917

6. Kanis JA, Johnell O, Oden A, Dawson A, De Laet C, Jonsson B. Ten year probabilities of osteoporotic fractures according to BMD and diagnostic thresholds. Osteoporos Int. 2001;12: 989–995. doi: 10.1007/s001980170006 11846333

7. Hunt HB, Donnelly E. Bone Quality Assessment Techniques: Geometric, Compositional, and Mechanical Characterization from Macroscale to Nanoscale. Clin Rev Bone Miner Metab. 2016;14: 133–149. doi: 10.1007/s12018-016-9222-4 28936129

8. Pothuaud L, Carceller P, Hans D. Correlations between grey-level variations in 2D projection images (TBS) and 3D microarchitecture: Applications in the study of human trabecular bone microarchitecture. Bone. 2008;42: 775–787. doi: 10.1016/j.bone.2007.11.018 18234577

9. Shevroja E, Lamy O, Kohlmeier L, Koromani F, Rivadeneira F, Hans D. Use of Trabecular Bone Score (TBS) as a Complementary Approach to Dual-energy X-ray Absorptiometry (DXA) for Fracture Risk Assessment in Clinical Practice. J Clin Densitom. 2017;20: 334–345. doi: 10.1016/j.jocd.2017.06.019 28734710

10. Silva BC, Broy SB, Boutroy S, Schousboe JT, Shepherd JA, Leslie WD. Fracture Risk Prediction by Non-BMD DXA Measures: The 2015 ISCD Official Positions Part 2: Trabecular Bone Score. J Clin Densitom. 2015;18: 309–330. doi: 10.1016/j.jocd.2015.06.008 26277849

11. Ulivieri FM, Silva BC, Sardanelli F, Hans D, Bilezikian JP, Caudarella R. Utility of the trabecular bone score (TBS) in secondary osteoporosis. Endocrine. 2014;47: 435–448. doi: 10.1007/s12020-014-0280-4 24853880

12. WHO. Assessment of fracture risk and its application to screening for postmenopausal osteoporosis: report of a WHO study group. Tech Rep Ser; 1994:843. Available: http://apps.who.int//iris/handle/10665/39142

13. Ammann P, Rizzoli R. Bone strength and its determinants. Osteoporos Int. 2016;14: 13–18. doi: 10.1007/s00198-002-1345-4 12730800

14. Hans D, Goertzen AL, Krieg MA, Leslie WD. Bone microarchitecture assessed by TBS predicts osteoporotic fractures independent of bone density: The manitoba study. J Bone Miner Res. 2011;26: 2762–2769. doi: 10.1002/jbmr.499 21887701

15. Del Rio LM, Winzenrieth R, Cormier C, Di Gregorio S. Is bone microarchitecture status of the lumbar spine assessed by TBS related to femoral neck fracture? A Spanish case-control study. Osteoporos Int. 2013;24: 991–998. doi: 10.1007/s00198-012-2008-8 22581295

16. Eller-Vainicher C, Filopanti M, Palmieri S, Ulivieri FM, Morelli V, Zhukouskaya V V., et al. Bone quality, as measured by trabecular bone score, in patients with primary hyperparathyroidism. Eur J Endocrinol. 2013;169: 155–162. doi: 10.1530/EJE-13-0305 23682095

17. Keaveny TM, Marshall LM, Nielson CM, Cummings SR, Hoffmann PF, Kopperdahl DL, et al. Finite Element Analysis of Proximal Femur QCT Scans for the Assessment of Hip Fracture Risk In Older Men. J Clin Densitom. 2008;11: 467–468. doi: 10.1016/j.jocd.2008.05.084

18. Wang X, Sanyal A, Cawthon PM, Palermo L, Jekir M, Christensen J, et al. Prediction of new clinical vertebral fractures in elderly men using finite element analysis of CT scans. J Bone Miner Res. 2012;27: 808–816. doi: 10.1002/jbmr.1539 22190331

19. Kim W, Oravec D, Nekkanty S, Yerramshetty J, Sander EA, Divine GW, et al. Digital tomosynthesis (DTS) for quantitative assessment of trabecular microstructure in human vertebral bone. Med Eng Phys. 2015;37: 109–120. doi: 10.1016/j.medengphy.2014.11.005 25498138

20. Keaveny TM. Biomechanical computed tomography—Noninvasive bone strength analysis using clinical computed tomography scans. Ann N Y Acad Sci. 2010;1192: 57–65. doi: 10.1111/j.1749-6632.2009.05348.x 20392218

21. Zauel R, Yeni YN, Bay BK, Dong XN, Fyhrie DP. Comparison of the linear finite element prediction of deformation and strain of human cancellous bone to 3D digital volume correlation measurements. J Biomech Eng. 2006;128: 1–6. doi: 10.1115/1.2146001 16532610

22. Choisne J, Valiadis JM, Travert C, Kolta S, Roux C, Skalli W. Vertebral strength prediction from Bi-Planar dual energy x-ray absorptiometry under anterior compressive force using a finite element model: An in vitro study. J Mech Behav Biomed Mater. 2018;87: 190–196. doi: 10.1016/j.jmbbm.2018.07.026 30077078

23. Zwahlen A, Christen D, Ruffoni D, Schneider P, Schmölz W, Müller R. Inverse Finite Element Modeling for Characterization of Local Elastic Properties in Image-Guided Failure Assessment of Human Trabecular Bone. J Biomech Eng. 2014;137: 011012. doi: 10.1115/1.4028991 25367315

24. Costa MC, Tozzi G, Cristofolini L, Danesi V, Viceconti M, Dall’Ara E. Micro finite element models of the vertebral body: Validation of local displacement predictions. PLoS One. 2017;12. doi: 10.1371/journal.pone.0180151 28700618

25. Hambli R. Micro-CT finite element model and experimental validation of trabecular bone damage and fracture. Bone. 2013;56: 363–374. doi: 10.1016/j.bone.2013.06.028 23850483

26. Naylor KE, McCloskey E V., Eastell R, Yang L. Use of DXA-based finite element analysis of the proximal femur in a longitudinal study of hip fracture. J Bone Miner Res. 2013;28: 1014–1021. doi: 10.1002/jbmr.1856 23281096

27. Mancuso ME, Johnson JE, Ahmed SS, Butler TA, Troy KL. Distal radius microstructure and finite element bone strain are related to site-specific mechanical loading and areal bone mineral density in premenopausal women. Bone Reports. 2018;8: 187–194. doi: 10.1016/j.bonr.2018.04.001 29963602

28. Yang S, Leslie WD, Luo Y, Goertzen AL, Ahmed S, Ward LM, et al. Automated DXA-based finite element analysis for hip fracture risk stratification: a cross-sectional study. Osteoporos Int. 2018;29: 191–200. doi: 10.1007/s00198-017-4232-8 29038836

29. Acevedo C, Stadelmann VA, Pioletti DP, Alliston T, Ritchie RO. Fatigue as the missing link between bone fragility and fracture. Nat Biomed Eng. 2018;2: 62–71. doi: 10.1038/s41551-017-0183-9 31015620

30. Nazarian A, Muller R. Time-lapsed microstructural imaging of bone failure behavior. J Biomech. 2004;37: 55–65. doi: 10.1016/s0021-9290(03)00254-9 14672568

31. Nazarian A, Stauber M, Zurakowski D, Snyder BD, Müller R. The interaction of microstructure and volume fraction in predicting failure in cancellous bone. Bone. 2006;39: 1196–1202. doi: 10.1016/j.bone.2006.06.013 16920051

32. Mirzaali MJ, Libonati F, Ferrario D, Rinaudo L, Messina C, Ulivieri FM, et al. Determinants of bone damage: An ex-vivo study on porcine vertebrae. PLoS One. 2018;13: e0202210. doi: 10.1371/journal.pone.0202210 30114229

33. Tabachnick BG, Fidell LS. Multiple regression. Fifth Edit. Using Multivariate Statistics. Boston: Pearson; 2007. pp. 117–195.

34. Wherry RJ. A New Formula for Predicting the Shrinkage of the Coefficient of Multiple Correlation. Ann Math Stat. 1931;2: 440–457. doi: 10.1214/aoms/1177732951

35. Carter DR, Bouxsein ML, Marcus R. New approaches for interpreting projected bone densitometry data. J Bone Miner Res. 1992;7: 137–145. doi: 10.1002/jbmr.5650070204 1570758

36. Yang L, Palermo L, Black DM, Eastell R. Prediction of incident hip fracture with the estimated femoral strength by finite element analysis of DXA scans in the study of osteoporotic fractures. J Bone Miner Res. 2014;29: 2594–2600. doi: 10.1002/jbmr.2291 24898426

37. Schileo E, Taddei F, Cristofolini L, Viceconti M. Subject-specific finite element models implementing a maximum principal strain criterion are able to estimate failure risk and fracture location on human femurs tested in vitro. J Biomech. 2008;41: 356–367. doi: 10.1016/j.jbiomech.2007.09.009 18022179

38. Morgan EF, Keaveny TM. Dependence of yield strain of human trabecular bone on anatomic site. J Biomech. 2001;34: 569–577. doi: 10.1016/s0021-9290(01)00011-2 11311697

39. Morgan EF, Bayraktar HH, Keaveny TM. Trabecular bone modulus-density relationships depend on anatomic site. J Biomech. 2003;36: 897–904. doi: 10.1016/s0021-9290(03)00071-x 12757797

40. Ün K, Bevill G, Keaveny TM. The effects of side-artifacts on the elastic modulus of trabecular bone. J Biomech. 2006;39: 1955–1963. doi: 10.1016/j.jbiomech.2006.05.012 16824533

41. Han KS, Rohlmann A, Zander T, Taylor WR. Lumbar spinal loads vary with body height and weight. Med Eng Phys. 2013;35: 969–977. doi: 10.1016/j.medengphy.2012.09.009 23040051

42. Hajihosseinali M, Arjmand N, Shirazi-Adl A. Effect of body weight on spinal loads in various activities: A personalized biomechanical modeling approach. J Biomech. 2015;48: 276–282. doi: 10.1016/j.jbiomech.2014.11.033 25498363

43. Lu Y, Zhu Y, Krause M, Huber G, Li J. Evaluation of the capability of the simulated dual energy X-ray absorptiometry-based two-dimensional finite element models for predicting vertebral failure loads. Med Eng Phys. 2019;69: 43–49. doi: 10.1016/j.medengphy.2019.05.007 31147202

44. MacNeil JAM, Adachi JD, Goltzman D, Josse RG, Kovacs CS, Prior JC, et al. Predicting fracture using 2D finite element modelling. Med Eng Phys. 2012;34: 478–484. doi: 10.1016/j.medengphy.2011.08.008 21959170

45. Kanis JA, Oden A, Johnell O, Johansson H, De Laet C, Brown J, et al. The use of clinical risk factors enhances the performance of BMD in the prediction of hip and osteoporotic fractures in men and women. Osteoporos Int. 2007;18: 1033–1046. doi: 10.1007/s00198-007-0343-y 17323110

46. Muschitz C, Kocijan R, Haschka J, Pahr D, Kaider A, Pietschmann P, et al. TBS reflects trabecular microarchitecture in premenopausal women and men with idiopathic osteoporosis and low-traumatic fractures. Bone. 2015;79: 259–266. doi: 10.1016/j.bone.2015.06.007 26092650

47. Pothuaud L, Barthe N, Krieg MA, Mehsen N, Carceller P, Hans D. Evaluation of the Potential Use of Trabecular Bone Score to Complement Bone Mineral Density in the Diagnosis of Osteoporosis: A Preliminary Spine BMD-Matched, Case-Control Study. J Clin Densitom. 2009;12: 170–176. doi: 10.1016/j.jocd.2008.11.006 19181553

48. Roux JP, Wegrzyn J, Boutroy S, Bouxsein ML, Hans D, Chapurlat R. The predictive value of trabecular bone score (TBS) on whole lumbar vertebrae mechanics: An ex vivo study. Osteoporos Int. 2013;24: 2455–2460. doi: 10.1007/s00198-013-2316-7 23468074

49. Silva BC, Leslie WD, Resch H, Lamy O, Lesnyak O, Binkley N, et al. Trabecular bone score: A noninvasive analytical method based upon the DXA image. J Bone Miner Res. 2014;29: 518–530. doi: 10.1002/jbmr.2176 24443324

50. Winzenrieth R, Michelet F, Hans D. Three-Dimensional (3D) microarchitecture correlations with 2d projection image gray-level variations assessed by trabecular bone score using high-resolution computed tomographic acquisitions: Effects of resolution and noise. J Clin Densitom. 2013;16: 287–296. doi: 10.1016/j.jocd.2012.05.001 22749406

51. Dall’Ara E, Eastell R, Viceconti M, Pahr D, Yang L. Experimental validation of DXA-based finite element models for prediction of femoral strength. J Mech Behav Biomed Mater. 2016;63: 17–25. doi: 10.1016/j.jmbbm.2016.06.004 27341287


Článek vyšel v časopise

PLOS One


2019 Číslo 12