Self-association of human beta-galactocerebrosidase: Dependence on pH, salt, and surfactant

Autoři: Eunhee Lee aff001;  Nazila Salamat-Miller aff001;  Walter F. Stafford aff002;  Katherine Taylor aff001
Působiště autorů: Process Development and Technical Services, Shire US Inc., a Takeda company, Lexington, MA, United States of America aff001;  Cardiovascular Biology Program and AUC Research Laboratory, Boston Biomedical Research Institute, Watertown, MA, United States of America aff002
Vyšlo v časopise: PLoS ONE 14(12)
Kategorie: Research Article
doi: 10.1371/journal.pone.0226618


Krabbe disease, also known as globoid cell leukodystrophy, is a rare genetic neurodegenerative disease caused by a deficiency of the galactocerebrosidase enzyme. To understand the association status of human beta-galactocerebrosidase (hGALC) in solution, we employed analytical ultracentrifugation (AUC). Our AUC results show that hGALC has a tendency for reversible self-association. Self-association decreases as the concentration of sodium chloride increases from 50 to 500 mM. This indicates that ionic interactions are involved in the association. The association is also dependent on pH, and high order oligomerization decreases as the pH increases from 4.5 to 7.5. Taken together, our results indicate that hGALC has the highest tendency for oligomerization at physiological ionic strength and pH (lysosomal lumen). This is the first report describing the self-associating property of hGALC in solution.

Klíčová slova:

Enzyme purification – Enzyme replacement therapy – Lysosomes – Sedimentation – Sodium chloride – Sodium phosphate – Viscosity – Recombinant protein purification


1. Ben-Yoseph Y, Hungerford M, Nadler HL. The interrelations between high- and low-molecular weight forms of normal and mutant (Krabbe-disease) galactocerebrosidase. Biochem J. 1980;189(1):9–15. doi: 10.1042/bj1890009 7458907

2. Cheetham PS, Dance NE. The separation and characterization of the methylumbelliferyl beta-galactosidases of human liver. Biochem J. 1976;157(1):189–95. doi: 10.1042/bj1570189 962854

3. Ben-Yoseph Y, Hungerford M, Nadler HL. The nature of mutation in Krabbe disease. Am J Hum Genet. 1978;30(6):644–52. 85413

4. Lo J, Mukerji K, Awasthi YC, Hanada E, Suzuki K, Srivastava SK. Purification and properties of sphingolipid beta-galactosidases from human placenta. J Biol Chem. 1979;254(14):6710–5. 109451

5. Chen YQ, Rafi MA, de Gala G, Wenger DA. Cloning and expression of cDNA encoding human galactocerebrosidase, the enzyme deficient in globoid cell leukodystrophy. Hum Mol Genet. 1993;2(11):1841–5. doi: 10.1093/hmg/2.11.1841 8281145

6. Sakai N, Inui K, Fujii N, Fukushima H, Nishimoto J, Yanagihara I, et al. Krabbe disease: isolation and characterization of a full-length cDNA for human galactocerebrosidase. Biochem Biophys Res Commun. 1994;198(2):485–91. doi: 10.1006/bbrc.1994.1071 8297359

7. Christopherson RI, Jones ME, Finch LR. A simple centrifuge column for desalting protein solutions. Anal Biochem. 1979;100:184–187. doi: 10.1016/0003-2697(79)90130-1 543535

8. Stafford WF 3rd. Boundary analysis in sedimentation transport experiments: a procedure for obtaining sedimentation coefficient distributions using the time derivative of the concentration profile. Anal Biochem. 1992;203(2):295–301. doi: 10.1016/0003-2697(92)90316-y 1416025

9. Stafford WF 3rd. Boundary analysis in sedimentation velocity experiments. Methods Enzymol. 1994;240:478–501. doi: 10.1016/s0076-6879(94)40061-x 7823845

10. Liu S, Stafford WF 3rd. An optical thermometer for direct measurement of cell temperature in the Beckman instruments XL-A analytical ultracentrifuge. Anal Biochem. 1995;224(1):199–202. doi: 10.1006/abio.1995.1030 7710072

11. Stafford WF, Sherwood PJ. Analysis of heterologous interacting systems by sedimentation velocity: curve fitting algorithms for estimation of sedimentation coefficients, equilibrium and kinetic constants. Biophys Chem. 2004;108(1–3):231–43. doi: 10.1016/j.bpc.2003.10.028 15043932

12. Laue TM SB, Ridgeway TM, Pelletier SL. Computer-aided interpretation of analytical sedimentation data for proteins. 1992:90–125.

13. Lewis MS, Junghans RP. Ultracentrifugal analysis of molecular mass of glycoproteins of unknown or ill-defined carbohydrate composition. Methods Enzymol. 2000;321:136–49. doi: 10.1016/s0076-6879(00)21191-9 10909055

14. Cooper GM. The Cell: A Molecular Approach. 2nd edition. Sunderland (MA): Sinauer Associates; 2000. Lysosomes. Available from:

15. Lodish H, Berk A, Zipursky SL, et al. Molecular Cell Biology. 4th edition. New York: W. H. Freeman; 2000. Section 5.4, Organelles of the Eukaryotic Cell. Available from:

16. Xu H, Ren D. Lysosomal physiology. Annu Rev Physiol. 2015;77:57–80. doi: 10.1146/annurev-physiol-021014-071649 25668017

17. Meyerhoffer SM and McGown LB. Critical micelle concentration behavior of sodium taurocholate in water. Langmuir. 1990;6(1):187–191.

18. Parenti G, Andria G, Ballabio A. Lysosomal storage diseases: from pathophysiology to therapy. Annu Rev Med. 2015;66:471–86. doi: 10.1146/annurev-med-122313-085916 25587658

19. Lee WC, Courtenay A, Troendle FJ, Stallings-Mann ML, Dickey CA, DeLucia MW, et al. Enzyme replacement therapy results in substantial improvements in early clinical phenotype in a mouse model of globoid cell leukodystrophy. FASEB J. 2005;19(11):1549–51. doi: 10.1096/fj.05-3826fje 15987783

20. Lee WC, Tsoi YK, Troendle FJ, DeLucia MW, Ahmed Z, Dicky CA, et al. Single-dose intracerebroventricular administration of galactocerebrosidase improves survival in a mouse model of globoid cell leukodystrophy. FASEB J. 2007;21(10):2520–7. doi: 10.1096/fj.06-6169com 17403939

21. Matthes F, Andersson C, Stein A, Eistrup C, Fogh J, Gieselmann V, et al. Enzyme replacement therapy of a novel humanized mouse model of globoid cell leukodystrophy. Exp Neurol. 2015;271:36–45. doi: 10.1016/j.expneurol.2015.04.020 25956830

Článek vyšel v časopise


2019 Číslo 12