Relationship between scapular initial position and scapular movement during dynamic motions

Autoři: Jun Umehara aff001;  Masahide Yagi aff001;  Tetsuya Hirono aff001;  Tomohito Komamura aff003;  Satoru Nishishita aff001;  Noriaki Ichihashi aff001
Působiště autorů: Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan aff001;  Research Fellow of Japan Society for the Promotion of Science, Tokyo, Japan aff002;  Chiba University Hospital, Rehabilitation unit, Chiba, Japan aff003
Vyšlo v časopise: PLoS ONE 14(12)
Kategorie: Research Article


Optimal scapular position and movement are necessary for normal function of the shoulder joint and it is essential to focus on scapula in the rehabilitation for shoulder disorders. The aim of this study was to discover the relationship between the scapular initial position and scapular movement during dynamic motions in healthy young men. Thirty-four men participated in this study. The scapular angles at initial position and in elevation and lowering during flexion and abduction were measured using an electromagnetic tracking device. The scapular movements from 30° to 120° during flexion and abduction were calculated. Spearman’s rank correlation coefficients were used to analyze the relationship between the scapular initial position and scapular movements. For upward rotation and posterior tilt of the scapula, there were significant positive correlations between the scapular initial position and scapular movement during flexion and abduction. For internal rotation, there were significant positive correlations, except 90° in lowering phase and 120° in both phases. While the humeral elevation increased, the correlation coefficients tended to decrease. Except for the internal rotation our results clarified the interactions between the scapular initial position and scapular movement during dynamic motions in healthy young men. The tendency of the decrease in correlation coefficient with elevation angle was shown.

Klíčová slova:

Biomechanics – Body limbs – Electromagnetics – Kinematics – Musculoskeletal system – Shoulders – Skeletal joints


1. Veeger HEJ, van der Helm FCT. Shoulder function: the perfect compromise between mobility and stability. J Biomech. 2007;40: 2119–29. doi: 10.1016/j.jbiomech.2006.10.016 17222853

2. Kibler WB. The role of the scapula in athletic shoulder function. Am J Sports Med. 1998;26: 325–37. doi: 10.1177/03635465980260022801 9548131

3. Borstad JD, Ludewig PM. Comparison of scapular kinematics between elevation and lowering of the arm in the scapular plane. Clin Biomech. 2002;17: 650–659. doi: 10.1016/S0268-0033(02)00136-5

4. Lawrence RL, Braman JP, Laprade RF, Ludewig PM. Comparison of 3-Dimensional Shoulder Complex Kinematics in Individuals With and Without Shoulder Pain, Part 1: Sternoclavicular, Acromioclavicular, and Scapulothoracic Joints. J Orthop Sport Phys Ther. 2014;44: 636–A8. doi: 10.2519/jospt.2014.5339 25103135

5. Lopes AD, Timmons MK, Grover M, Ciconelli RM, Michener LA. Visual scapular dyskinesis: kinematics and muscle activity alterations in patients with subacromial impingement syndrome. Arch Phys Med Rehabil. 2015;96: 298–306. doi: 10.1016/j.apmr.2014.09.029 25449194

6. Ludewig PM, Cook TM. Alterations in shoulder kinematics and associated muscle activity in people with symptoms of shoulder impingement. Phys Ther. 2000;80: 276–91. 10696154

7. Fung M, Kato S, Barrance PJ, Elias JJ, McFarland EG, Nobuhara K, et al. Scapular and clavicular kinematics during humeral elevation: a study with cadavers. J shoulder Elb Surg. 2001;10: 278–85. doi: 10.1067/mse.2001.114496 11408912

8. Ludewig PM, Phadke V, Braman JP, Hassett DR, Cieminski CJ, LaPrade RF. Motion of the shoulder complex during multiplanar humeral elevation. J Bone Joint Surg Am. 2009;91: 378–389. doi: 10.2106/JBJS.G.01483 19181982

9. Mandalidis DG, Mc Glone BS, Quigley RF, McInerney D, O’Brien M. Digital fluoroscopic assessment of the scapulohumeral rhythm. Surg Radiol Anat. 1999;21: 241–246. doi: 10.1007/bf01631393 10549079

10. Oyama S, Myers JB, Wassinger CA, Daniel Ricci R, Lephart SM. Asymmetric resting scapular posture in healthy overhead athletes. J Athl Train. 2008;43: 565–70. doi: 10.4085/1062-6050-43.6.565 19030133

11. Struyf F, Nijs J, Baeyens JP, Mottram S, Meeusen R. Scapular positioning and movement in unimpaired shoulders, shoulder impingement syndrome, and glenohumeral instability. Scand J Med Sci Sport. 2011;21: 352–358. doi: 10.1111/j.1600-0838.2010.01274.x 21385219

12. Castelein B, Cagnie B, Cools A. Scapular muscle dysfunction associated with subacromial pain syndrome. J Hand Ther. 2017;30: 136–146. doi: 10.1016/j.jht.2017.03.006 28576347

13. Ben Kibler W, McMullen J. Scapular dyskinesis and its relation to shoulder pain. J Am Acad Orthop Surg. 2003;11: 142–51. Available: doi: 10.5435/00124635-200303000-00008 12670140

14. Braman JP, Engel SC, LaPrade RF, Ludewig PM. In vivo assessment of scapulohumeral rhythm during unconstrained overhead reaching in asymptomatic subjects. J Shoulder Elb Surg. 2009;18: 960–967. doi: 10.1016/j.jse.2009.02.001 19395283

15. McClure PW, Michener L a., Sennett BJ, Karduna AR. Direct 3-dimensional measurement of scapular kinematics during dynamic movements in vivo. J Shoulder Elb Surg. 2001;10: 269–277. doi: 10.1067/mse.2001.112954 11408911

16. Sahrmann S. Diagnosis and treatment of movement impairment syndromes. Mo, editor. St. Louis: Mosby; 2002.

17. Reijneveld EAE, Noten S, Michener LA, Cools A, Struyf F. Clinical outcomes of a scapular-focused treatment in patients with subacromial pain syndrome: a systematic review. Br J Sports Med. 2017;51: 436–441. doi: 10.1136/bjsports-2015-095460 27251897

18. Struyf F, Nijs J, Mollekens S, Jeurissen I, Truijen S, Mottram S, et al. Scapular-focused treatment in patients with shoulder impingement syndrome: A randomized clinical trial. Clin Rheumatol. 2013;32: 73–85. doi: 10.1007/s10067-012-2093-2 23053685

19. de Groot JH, Brand R. A three-dimensional regression model of the shoulder rhythm. Clin Biomech (Bristol, Avon). 2001;16: 735–43.

20. Abe T, Kearns CF, Fukunaga T. Sex differences in whole body skeletal muscle mass measured by magnetic resonance imaging and its distribution in young Japanese adults. Br J Sports Med. 2003;37:436–40. doi: 10.1136/bjsm.37.5.436 14514537

21. Wu G, van der Helm FCT, (DirkJan) Veeger HEJ, Makhsous M, Van Roy P, Anglin C, et al. ISB recommendation on definitions of joint coordinate systems of various joints for the reporting of human joint motion—Part II: shoulder, elbow, wrist and hand. J Biomech. 2005;38: 981–992. doi: 10.1016/j.jbiomech.2004.05.042 15844264

22. Umehara J, Nakamura M, Nishishita S, Tanaka H, Kusano K, Ichihashi N. Scapular kinematic alterations during arm elevation with decrease in pectoralis minor stiffness after stretching in healthy individuals. J Shoulder Elb Surg. 2018; doi: 10.1016/j.jse.2018.02.037 29602634

23. Karduna a R, McClure PW, Michener L a, Sennett B. Dynamic measurements of three-dimensional scapular kinematics: a validation study. J Biomech Eng. 2001;123: 184–190. doi: 10.1115/1.1351892 11340880

24. Inman VT, Saunders JB, Abbott LC. Observations of the function of the shoulder joint. 1944. Clin Orthop Relat Res. 1996; 3–12. Available:

25. Matsuki K, Matsuki KO, Mu S, Yamaguchi S, Ochiai N, Sasho T, et al. In vivo 3-dimensional analysis of scapular kinematics: Comparison of dominant and nondominant shoulders. J Shoulder Elb Surg. 2011;20: 659–665. doi: 10.1016/j.jse.2010.09.012 21194980

26. Borsa PA, Timmons MK, Sauers EL. Scapular-Positioning Patterns During Humeral Elevation in Unimpaired Shoulders. J Athl Train. 2003;38: 12–17. Available: 12937466

27. Ebaugh DD, Spinelli BA. Scapulothoracic motion and muscle activity during the raising and lowering phases of an overhead reaching task. J Electromyogr Kinesiol. 2010;20: 199–205. doi: 10.1016/j.jelekin.2009.04.001 19406665

28. Wickham J, Pizzari T, Stansfeld K, Burnside A, Watson L. Quantifying “normal” shoulder muscle activity during abduction. J Electromyogr Kinesiol. 2010;20: 212–22. doi: 10.1016/j.jelekin.2009.06.004 19625195

29. Struyf F, Nijs J, De Coninck K, Giunta M, Mottram S, Meeusen R. Clinical assessment of scapular positioning in musicians: An intertester reliability study. J Athl Train. 2009;44: 519–526. doi: 10.4085/1062-6050-44.5.519 19771291

30. Shadmehr A, Bagheri H, Ansari NN, Sarafraz H. The reliability measurements of lateral scapular slide test at three different degrees of shoulder joint abduction. Br J Sports Med. 2010;44: 289–93. doi: 10.1136/bjsm.2008.050872 18812417

31. Shadmehr A, Sarafraz H, Heidari Blooki M, Jalaie SH, Morais N. Reliability, agreement, and diagnostic accuracy of the Modified Lateral Scapular Slide test. Man Ther. 2016;24: 18–24. doi: 10.1016/j.math.2016.04.004 27317502

32. Koslow PA, Prosser LA, Strony GA, Suchecki SL, Mattingly GE. Specificity of the lateral scapular slide test in asymptomatic competitive athletes. J Orthop Sports Phys Ther. 2003;33: 331–6. doi: 10.2519/jospt.2003.33.6.331 12839208

33. Nijs J, Roussel N, Vermeulen K, Souvereyns G. Scapular positioning in patients with shoulder pain: A study examining the reliability and clinical importance of 3 clinical tests. Arch Phys Med Rehabil. 2005;86: 1349–1355. doi: 10.1016/j.apmr.2005.03.021 16003663

34. Meskers CGM, van de Sande MAJ, de Groot JH. Comparison between tripod and skin-fixed recording of scapular motion. J Biomech. 2007;40: 941–6. doi: 10.1016/j.jbiomech.2006.02.011 16584738

Článek vyšel v časopise


2019 Číslo 12
Nejčtenější tento týden