Comprehensive analysis of putative dihydroflavonol 4-reductase gene family in tea plant


Autoři: Xin Mei aff001;  Caibi Zhou aff002;  Wenting Zhang aff002;  Dylan O’Neill Rothenberg aff002;  Shihua Wan aff002;  Lingyun Zhang aff002
Působiště autorů: South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, Guangdong, China aff001;  College of Horticulture Science, South China Agricultural University, Guangzhou, Guangdong, China aff002;  Department of Tea Science, Qiannan Normal University for Nationalities, Duyun, Guizhou, China aff003
Vyšlo v časopise: PLoS ONE 14(12)
Kategorie: Research Article
doi: 10.1371/journal.pone.0227225

Souhrn

One identified dihydroflavonol 4-reductases (DFR) encoding gene (named as CsDFRa herein) and five putative DFRs (named as CsDFRb1, CsDFRb2, CsDFRb3, CsDFRc and CsDFRd) in tea (Camellia sinensis) have been widely discussed in recent papers concerning multi-omics data. However, except for CsDFRa, their function and biochemical characteristics are not clear. This study aims to compare all putative CsDFRs and preliminarily evaluate their function. We investigated the sequences of genes (coding and promoter regions) and predicted structures of proteins encoded, and determined the activities of heterologously expressed CsDFRs under various conditions. The results showed that the sequences of five putative CsDFRs were quite different from CsDFRa, and had lower expression levels as well. The five putative CsDFRs could not catalyze three dihydroflavonol substrates. The functional CsDFRa had the strongest affinity with dihydroquercetin, and performed best at pH around 7 and 35°C but was not stable at lower pHs or higher temperatures. Single amino acid mutation at position 141 modified the preference of CsDFRa for dihydroquercetin and dihydromyricetin, and also weakened its stability. These data suggest that only CsDFRa works in the pathway for generating anthocyanidins and catechins. This study provides new insights into the function of CsDFRs and may assist to develop new strategies to manipulate the composition of tea flavonoids in the future.

Klíčová slova:

Amino acid sequence analysis – Enzymes – Introns – Leaves – Protein structure comparison – Sequence alignment – Sequence motif analysis – Tea


Zdroje

1. Wei K, Wang L, Zhang Y, Ruan L, Li H, Wu L, et al. A coupled role for CsMYB75 and CsGSTF1 in anthocyanin hyperaccumulation in purple tea. Plant J. 2019;97: 825–840. doi: 10.1111/tpj.14161 30447121

2. Karageorgou P, Manetas Y. The importance of being red when young: anthocyanins and the protection of young leaves of Quercus coccifera from insect herbivory and excess light. Tree Physiol. 2006;26: 613–621. doi: 10.1093/treephys/26.5.613 16452075

3. Stapleton AE. Ultraviolet radiation and plants: burning questions. Plant Cell. 1992; 1353–1358. doi: 10.1105/tpc.4.11.1353 12297637

4. Qiu Z, Wang X, Gao J, Guo Y, Huang Z, Du Y. The tomato Hoffman’s anthocyaninless gene encodes a bHLH transcription factor involved in anthocyanin biosynthesis that is developmentally regulated and induced by low temperatures. PLoS One. 2016;11: e0151067. doi: 10.1371/journal.pone.0151067 26943362

5. Van Breusegem F, Dat JF. Reactive oxygen species in plant cell death. Plant Physiol. 2006;141: 384–390. doi: 10.1104/pp.106.078295 16760492

6. Joshi R, Rana A, Kumar V, Kumar D, Padwad YS, Yadav SK, et al. Anthocyanins enriched purple tea exhibits antioxidant, immunostimulatory and anticancer activities. J Food Sci Technol. 2017;54: 1953–1963. doi: 10.1007/s13197-017-2631-7 28720952

7. Terahara N, Takeda Y, Nesumi A, Honda T. Anthocyanins from red flower tea (Benibana-cha), Camellia sinensis. Phytochemistry. 2001;56: 359–361. doi: 10.1016/s0031-9422(00)00359-9 11249101

8. Saito T, Honma D, Tagashira M, Kanda T, Nesumi A, Maeda-Yamamoto M. Anthocyanins from new red leaf tea ‘Sunrouge.’ J Agric Food Chem. 2011;59: 4779–4782. doi: 10.1021/jf200250g 21480597

9. Joshi R, Rana A, Gulati A. Studies on quality of orthodox teas made from anthocyanin-rich tea clones growing in Kangra valley, India. Food Chem. 2015;176: 357–366. doi: 10.1016/j.foodchem.2014.12.067 25624244

10. Xie D-Y, Jackson LA, Cooper JD, Ferreira D, Paiva NL. Molecular and biochemical analysis of two cDNA clones encoding dihydroflavonol-4-reductase from Medicago truncatula. Plant Physiol. 2004;134: 979–994. doi: 10.1104/pp.103.030221 14976232

11. Maeda-Yamamoto M, Saito T, Nesumi A, Tokuda Y, Ema K, Honma D, et al. Chemical analysis and acetylcholinesterase inhibitory effect of anthocyanin-rich red leaf tea (cv. Sunrouge). J Sci Food Agric. 2012;92: 2379–2386. doi: 10.1002/jsfa.5644 22419270

12. Hsu C-P, Shih Y-T, Lin B-R, Chiu C-F, Lin C-C. Inhibitory effect and mechanisms of an anthocyanins- and anthocyanidins-rich extract from purple-shoot tea on colorectal carcinoma cell proliferation. J Agric Food Chem. 2012;60: 3686–3692. doi: 10.1021/jf204619n 22404116

13. Wang Z, Jiang C, Wen Q, Wang N, Tao Y, Xu L. Deep sequencing of the Camellia chekiangoleosa transcriptome revealed candidate genes for anthocyanin biosynthesis. Gene. 2014;538: 1–7. doi: 10.1016/j.gene.2014.01.035 24462969

14. Wang W, Zhou Y, Wu Y, Dai X, Liu Y, Qian Y, et al. Insight into catechins metabolic pathways of Camellia sinensis based on genome and transcriptome analysis. J Agric Food Chem. 2018;66: 4281–4293. doi: 10.1021/acs.jafc.8b00946 29606002

15. Rothenberg D, Yang H, Chen M, Zhang W, Zhang L. Metabolome and transcriptome sequencing analysis reveals anthocyanin metabolism in pink flowers of anthocyanin-rich tea (Camellia sinensis). Molecules. 2019;24: 1064. doi: 10.3390/molecules24061064 30889908

16. Li Y, Liu X, Cai X, Shan X, Gao R, Yang S, et al. Dihydroflavonol 4-reductase genes from Freesia hybrida play important and partially overlapping roles in the biosynthesis of flavonoids. Front Plant Sci. 2017;8. doi: 10.3389/fpls.2017.00428 28400785

17. Punyasiri PAN, Abeysinghe ISB, Kumar V, Treutter D, Duy D, Gosch C, et al. Flavonoid biosynthesis in the tea plant Camellia sinensis: properties of enzymes of the prominent epicatechin and catechin pathways. Arch Biochem Biophys. 2004;431: 22–30. doi: 10.1016/j.abb.2004.08.003 15464723

18. Singh K, Kumar S, Yadav SK, Ahuja PS. Characterization of dihydroflavonol 4-reductase cDNA in tea [Camellia sinensis (L.) O. Kuntze]. Plant Biotechnol Rep. 2009;3: 95–101. doi: 10.1007/s11816-008-0079-y

19. Wang Y, Xu Y, Hu X, Jiang X, Yang Q, Li W, et al. Clone, expression and functional analysis of dihydroflavonol 4-reductase gene of tea plant (Camellia sinensis). J Tea Sci. 2013;33: 193–201 (in Chinese).

20. Johnson ET, Ryu S, Yi H, Shin B, Cheong H, Choi G. Alteration of a single amino acid changes the substrate specificity of dihydroflavonol 4-reductase. Plant J. 2001;25: 325–333. doi: 10.1046/j.1365-313x.2001.00962.x 11208024

21. Petit P, Granier T, D’Estaintot BL, Manigand C, Bathany K, Schmitter J-M, et al. Crystal structure of grape dihydroflavonol 4-reductase, a key enzyme in flavonoid biosynthesis. J Mol Biol. 2007;368: 1345–1357. doi: 10.1016/j.jmb.2007.02.088 17395203

22. Wang Yan, Qiu Hu, Zeng Zhong, et al. Comprehensive analysis of SnRK gene family and their responses to salt stress in Eucalyptus grandis. Int J Mol Sci. 2019;20: 2786. doi: 10.3390/ijms20112786 31174407

23. Hu B, Jin J, Guo AY, Zhang H, Luo J, Gao G. GSDS 2.0: An upgraded gene feature visualization server. Bioinformatics. 2015. doi: 10.1093/bioinformatics/btu817 25504850

24. Bailey TL, Elkan C. Fitting a mixture model by expectation maximization to discover motifs in biopolymers. Proc Int Conf Intell Syst Mol Biol. 1994.

25. Emanuelsson O, Nielsen H, Brunak S, Von Heijne G. Predicting subcellular localization of proteins based on their N-terminal amino acid sequence. J Mol Biol. 2000;300: 1005–16. doi: 10.1006/jmbi.2000.3903 10891285

26. Mei X, Xu X, Yang Z. Characterization of two tea glutamate decarboxylase isoforms involved in GABA production. Food Chem. 2020;305: 125440. doi: 10.1016/j.foodchem.2019.125440 31494496

27. Kuntal BK, Aparoy P, Reddanna P. EasyModeller: A graphical interface to MODELLER. BMC Res Notes. 2010;3: 226. doi: 10.1186/1756-0500-3-226 20712861

28. Morris GM, Huey R, Lindstrom W, Sanner MF, Belew RK, Goodsell DS, et al. AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. J Comput Chem. 2009;30: 2785–2791. doi: 10.1002/jcc.21256 19399780

29. Xie S, Zhao T, Zhang Z, Meng J. Reduction of dihydrokaempferol by Vitis vinfera dihydroflavonol 4-reductase to produce orange pelargonidin-type anthocyanins. J Agric Food Chem. 2018;66: 3524–3532. doi: 10.1021/acs.jafc.7b05766 29554804

30. Wei C, Yang H, Wang S, Zhao J, Liu C, Gao L, et al. Draft genome sequence of Camellia sinensis var. sinensis provides insights into the evolution of the tea genome and tea quality. Proc Natl Acad Sci. 2018;115: E4151–E4158. doi: 10.1073/pnas.1719622115 29678829

31. Shimada N, Sasaki R, Sato S, Kaneko T, Tabata S, Aoki T, et al. A comprehensive analysis of six dihydroflavonol 4-reductases encoded by a gene cluster of the Lotus japonicus genome. J Exp Bot. 2005;56: 2573–2585. doi: 10.1093/jxb/eri251 16087700

32. Miosic S, Thill J, Milosevic M, Gosch C, Pober S, Molitor C, et al. Dihydroflavonol 4-reductase genes encode enzymes with contrasting substrate specificity and show divergent gene expression profiles in Fragaria species. PLoS One. 2014;9: e112707. doi: 10.1371/journal.pone.0112707 25393679

33. Wang Y, Gao L, Shan Y, Liu Y, Tian Y, Xia T. Influence of shade on flavonoid biosynthesis in tea (Camellia sinensis (L.) O. Kuntze). Sci Hortic. 2012;141: 7–16. doi: 10.1016/j.scienta.2012.04.013

34. Shirley BW, Kubasek WL, Storz G, Bruggemann E, Koornneef M, Ausubel FM, et al. Analysis of Arabidopsis mutants deficient in flavonoid biosynthesis. Plant J. 1995. doi: 10.1046/j.1365-313X.1995.08050659.x 8528278

35. Huang Y, Gou J, Jia Z, Yang L, Sun Y, Xiao X, et al. Molecular Cloning and characterization of two genes encoding dihydroflavonol-4-reductase from Populus trichocarpa. PLoS One. 2012;7: e30364. doi: 10.1371/journal.pone.0030364 22363429

36. Kumar V, Nadda G, Kumar S, Yadav SK. Transgenic tobacco overexpressing tea cDNA encoding dihydroflavonol 4-reductase and anthocyanidin reductase induces early flowering and provides biotic stress tolerance. PLoS One. 2013;8: e65535. doi: 10.1371/journal.pone.0065535 23823500

37. Zhu Y, Peng Q, Li K, Xie D-Y. Molecular cloning and functional characterization of a dihydroflavonol 4-reductase from Vitis bellula. Molecules. 2018;23: 861. doi: 10.3390/molecules23040861 29642567

38. Luo Y, Yu S, Li J, Li Q, Wang K, Huang J, et al. Molecular characterization of WRKY transcription factors that act as negative regulators of o-methylated catechin biosynthesis in tea plants (Camellia sinensis L.). J Agric Food Chem. 2018;66: 11234–11243. doi: 10.1021/acs.jafc.8b02175 30350966

39. Luo Y, Yu S, Li J, Li Q, Wang K, Huang J, et al. Characterization of the transcriptional regulator CsbHLH62 that negatively regulates EGCG3"Me biosynthesis in Camellia sinensis. Gene. 2019;699: 8–15. doi: 10.1016/j.gene.2019.03.002 30851424

40. Park J-S, Kim J-B, Hahn B-S, Kim K-H, Ha S-H, Kim J-B, et al. EST analysis of genes involved in secondary metabolism in Camellia sinensis (tea), using suppression subtractive hybridization. Plant Sci. 2004;166: 953–961. doi: 10.1016/j.plantsci.2003.12.010

41. Hong G, Wang J, Zhang Y, Hochstetter D, Zhang S, Pan Y, et al. Biosynthesis of catechin components is differentially regulated in dark-treated tea (Camellia sinensis L.). Plant Physiol Biochem. 2014;78: 49–52. doi: 10.1016/j.plaphy.2014.02.017 24632491

42. Li J, Lv X, Wang L, Qiu Z, Song X, Lin J, et al. Transcriptome analysis reveals the accumulation mechanism of anthocyanins in ‘Zijuan’ tea (Camellia sinensis var. asssamica (Masters) kitamura) leaves. Plant Growth Regul. 2017;81: 51–61. doi: 10.1007/s10725-016-0183-x

43. Liu M, Chen XJ, Qi XH, Xu Q, Chen XH. Changes in the expression of genes related to the biosynthesis of catechins in tea (Camellia sinensis L.) under greenhouse conditions. J Hortic Sci Biotechnol. 2015;90: 150–156. doi: 10.1080/14620316.2015.11513166


Článek vyšel v časopise

PLOS One


2019 Číslo 12