Walking-speed estimation using a single inertial measurement unit for the older adults


Autoři: Seonjeong Byun aff001;  Hyang Jun Lee aff003;  Ji Won Han aff003;  Jun Sung Kim aff004;  Euna Choi aff005;  Ki Woong Kim aff001
Působiště autorů: Department of Psychiatry, Seoul National University, College of Medicine, Seoul, Korea aff001;  Department of Neuropsychiatry, National Medical Center, Seoul, Korea aff002;  Department of Neuropsychiatry, Seoul National University Bundang Hospital, Seongnam, Korea aff003;  Department of Brain and Cognitive Science, Seoul National University College of Natural Sciences, Seoul, Korea aff004;  Korean National Institute of Dementia, Seongnam, Korea aff005
Vyšlo v časopise: PLoS ONE 14(12)
Kategorie: Research Article
doi: 10.1371/journal.pone.0227075

Souhrn

Background

Although walking speed is associated with important clinical outcomes and designated as the sixth vital sign of the elderly, few walking-speed estimation algorithms using an inertial measurement unit (IMU) have been derived and tested in the older adults, especially in the elderly with slow speed. We aimed to develop a walking-speed estimation algorithm for older adults based on an IMU.

Methods

We used data from 659 of 785 elderly enrolled from the cohort study. We measured gait using an IMU attached on the lower back while participants walked around a 28 m long round walkway thrice at comfortable paces. Best-fit linear regression models were developed using selected demographic, anthropometric, and IMU features to estimate the walking speed. The accuracy of the algorithm was verified using mean absolute error (MAE) and root mean square error (RMSE) in an independent validation set. Additionally, we verified concurrent validity with GAITRite using intraclass correlation coefficients (ICCs).

Results

The proposed algorithm incorporates the age, sex, foot length, vertical displacement, cadence, and step-time variability obtained from an IMU sensor. It exhibited high estimation accuracy for the walking speed of the elderly and remarkable concurrent validity compared to the GAITRite (MAE = 4.70%, RMSE = 6.81 ??/?, concurrent validity (ICC (3,1)) = 0.937). Moreover, it achieved high estimation accuracy even for slow walking by applying a slow-speed-specific regression model sequentially after estimation by a general regression model. The accuracy was higher than those obtained with models based on the human gait model with or without calibration to fit the population.

Conclusions

The developed inertial-sensor-based walking-speed estimation algorithm can accurately estimate the walking speed of older adults.

Klíčová slova:

Acceleration – Algorithms – Elderly – Feet – Gait analysis – Geriatrics – Inertia – Walking


Zdroje

1. Leisman G, Moustafa AA, Shafir T. Thinking, walking, talking: integratory motor and cognitive brain function. Frontiers in public health. 2016;4.

2. Morris ME, Iansek R, Matyas TA, Summers JJ. The pathogenesis of gait hypokinesia in Parkinson's disease. Brain. 1994;117(5):1169–81.

3. Bayle N, Patel AS, Crisan D, Guo LJ, Hutin E, Weisz DJ, et al. Contribution of step length to increase walking and turning speed as a marker of Parkinson’s disease progression. PLoS One. 2016;11(4):e0152469. doi: 10.1371/journal.pone.0152469 27111531

4. Kueper JK, Speechley M, Lingum NR, Montero-Odasso M. Motor function and incident dementia: a systematic review and meta-analysis. Age and Ageing. 2017:1–10.

5. Verghese J, Annweiler C, Ayers E, Barzilai N, Beauchet O, Bennett DA, et al. Motoric cognitive risk syndrome: multicountry prevalence and dementia risk. Neurology. 2014;83(8):718–26. Epub 2014/07/18. doi: 10.1212/WNL.0000000000000717 25031288

6. Fritz S, Lusardi M. White paper: "walking speed: the sixth vital sign". J Geriatr Phys Ther. 2009;32(2):46–9. Epub 2009/12/31. 20039582

7. Middleton A, Fritz SL, Lusardi M. Walking speed: the functional vital sign. Journal of aging and physical activity. 2015;23(2):314–22. doi: 10.1123/japa.2013-0236 24812254

8. Yang S, Li Q. Inertial sensor-based methods in walking speed estimation: A systematic review. Sensors. 2012;12(5):6102–16. doi: 10.3390/s120506102 22778632

9. Zihajehzadeh S, Park EJ. Regression Model-Based Walking Speed Estimation Using Wrist-Worn Inertial Sensor. PLoS One. 2016;11(10):e0165211. doi: 10.1371/journal.pone.0165211 27764231

10. Alvarez JC, Alvarez D, López A, González RC. Pedestrian navigation based on a waist-worn inertial sensor. Sensors. 2012;12(8):10536–49. doi: 10.3390/s120810536 23112614

11. Köse A, Cereatti A, Della Croce U. Bilateral step length estimation using a single inertial measurement unit attached to the pelvis. Journal of neuroengineering and rehabilitation. 2012;9(1):9.

12. Do T-N, Liu R, Yuen C, Zhang M, Tan U-X. Personal dead reckoning using IMU mounted on upper torso and inverted pendulum model. IEEE Sensors Journal. 2016;16(21):7600–8.

13. Allseits E, Agrawal V, Lučarević J, Gailey R, Gaunaurd I, Bennett C. A practical step length algorithm using lower limb angular velocities. Journal of biomechanics. 2018;66:137–44. doi: 10.1016/j.jbiomech.2017.11.010 29198369

14. Aminian K, Najafi B, Büla C, Leyvraz P-F, Robert P. Spatio-temporal parameters of gait measured by an ambulatory system using miniature gyroscopes. Journal of biomechanics. 2002;35(5):689–99. doi: 10.1016/s0021-9290(02)00008-8 11955509

15. Mariani B, Hoskovec C, Rochat S, Bula C, Penders J, Aminian K. 3D gait assessment in young and elderly subjects using foot-worn inertial sensors. J Biomech. 2010;43(15):2999–3006. Epub 2010/07/27. doi: 10.1016/j.jbiomech.2010.07.003 20656291

16. Miyazaki S. Long-term unrestrained measurement of stride length and walking velocity utilizing a piezoelectric gyroscope. IEEE transactions on Biomedical Engineering. 1997;44(8):753–9. doi: 10.1109/10.605434 9254988

17. Zijlstra W, Hof AL. Assessment of spatio-temporal gait parameters from trunk accelerations during human walking. Gait & posture. 2003;18(2):1–10.

18. Hu J-S, Sun K-C, Cheng C-Y. A kinematic human-walking model for the normal-gait-speed estimation using tri-axial acceleration signals at waist location. IEEE Transactions on Biomedical Engineering. 2013;60(8):2271–9. doi: 10.1109/TBME.2013.2252345 23529073

19. Soltani A, Dejnabadi H, Savary M, Aminian K. Real-world gait speed estimation using wrist sensor: A personalized approach. IEEE journal of biomedical and health informatics. 2019.

20. JudgeRoy JO, Davis B III, Õunpuu S. Step length reductions in advanced age: the role of ankle and hip kinetics. The Journals of Gerontology Series A: Biological Sciences and Medical Sciences. 1996;51(6):M303–M12.

21. Öberg T, Karsznia A, Öberg K. Basic gait parameters: reference data for normal subjects, 10–79 years of age. Journal of rehabilitation research and development. 1993;30:210–. 8035350

22. Schimpl M, Lederer C, Daumer M. Development and validation of a new method to measure walking speed in free-living environments using the actibelt® platform. PloS one. 2011;6(8):e23080. doi: 10.1371/journal.pone.0023080 21850254

23. Vathsangam H, Emken A, Spruijt-Metz D, Sukhatme GS, editors. Toward free-living walking speed estimation using Gaussian process-based regression with on-body accelerometers and gyroscopes. 2010 4th International Conference on Pervasive Computing Technologies for Healthcare; 2010: IEEE.

24. Zihajehzadeh S, Park EJ, editors. Experimental evaluation of regression model-based walking speed estimation using lower body-mounted IMU. 2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC); 2016: IEEE.

25. Zihajehzadeh S, Park EJ, editors. A Gaussian process regression model for walking speed estimation using a head-worn IMU. 2017 39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC); 2017: IEEE.

26. Fasel B, Dadashi F, Aminian K, editors. Instantaneous walking speed estimation for daily life activity monitoring based on wrist acceleration. Conf Proc Amb Mon of Phy Act and Mov; 2015.

27. Giladi N, Herman T, Reider-Groswasser II, Gurevich T, Hausdorff JM. Clinical characteristics of elderly patients with a cautious gait of unknown origin. Journal of neurology. 2005;252(3):300–6. doi: 10.1007/s00415-005-0641-2 15726273

28. Herman T, Giladi N, Gurevich T, Hausdorff J. Gait instability and fractal dynamics of older adults with a “cautious” gait: why do certain older adults walk fearfully? Gait & posture. 2005;21(2):178–85.

29. Kim TH, Park JH, Lee JJ, Jhoo JH, Kim B-J, Kim J-L, et al. Overview of the Korean Longitudinal Study on Cognitive Aging and Dementia. Alzheimer's & Dementia. 2013;9(4, Supplement):P626–P7. http://dx.doi.org/10.1016/j.jalz.2013.05.1268.

30. Jung H-W, Yoo H-J, Park S-Y, Kim S-W, Choi J-Y, Yoon S-J, et al. The Korean version of the FRAIL scale: clinical feasibility and validity of assessing the frailty status of Korean elderly. The Korean journal of internal medicine. 2016;31(3):594. doi: 10.3904/kjim.2014.331 26701231

31. Köpke S, Meyer G. The Tinetti test. Zeitschrift für Gerontologie und Geriatrie. 2006;39(4):288–91. doi: 10.1007/s00391-006-0398-y 16900448

32. O'keeffe S, Kazeem H, Philpott R, Playfer J, Gosney M, Lye M. Gait disturbance in Alzheimer's disease: a clinical study. Age and Ageing. 1996;25(4):313–6. doi: 10.1093/ageing/25.4.313 8831878

33. Euston M, Coote P, Mahony R, Kim J, Hamel T, editors. A complementary filter for attitude estimation of a fixed-wing UAV. Intelligent Robots and Systems, 2008 IROS 2008 IEEE/RSJ International Conference on; 2008: IEEE.

34. Elble R, Thomas SS, Higgins C, Colliver J. Stride-dependent changes in gait of older people. Journal of neurology. 1991;238(1):1–5. doi: 10.1007/bf00319700 2030366

35. Alvarez D, González RC, López A, Alvarez JC, editors. Comparison of step length estimators from weareable accelerometer devices. Engineering in Medicine and Biology Society, 2006 EMBS'06 28th Annual International Conference of the IEEE; 2006: IEEE.

36. Tersteeg M, Marple-Horvat DE, Loram ID. Cautious gait in relation to knowledge and vision of height: is altered visual information the dominant influence? Journal of Neurophysiology. 2012;107(10):2686–91. doi: 10.1152/jn.00875.2011 22378173

37. Ferrandez A-M, Pailhous J, Durup M. Slowness in elderly gait. Experimental aging research. 1990;16(2):79–89.

38. Muro-De-La-Herran A, Garcia-Zapirain B, Mendez-Zorrilla A. Gait analysis methods: An overview of wearable and non-wearable systems, highlighting clinical applications. Sensors. 2014;14(2):3362–94. doi: 10.3390/s140203362 24556672

39. Snijders AH, Van De Warrenburg BP, Giladi N, Bloem BR. Neurological gait disorders in elderly people: clinical approach and classification. The Lancet Neurology. 2007;6(1):63–74. doi: 10.1016/S1474-4422(06)70678-0 17166803

40. Hu JS, Sun KC, Cheng CY. A kinematic human-walking model for the normal-gait-speed estimation using tri-axial acceleration signals at waist location. IEEE Trans Biomed Eng. 2013;60(8):2271–9. Epub 2013/03/27. doi: 10.1109/TBME.2013.2252345 23529073

41. Trojaniello D, Cereatti A, Pelosin E, Avanzino L, Mirelman A, Hausdorff JM, et al. Estimation of step-by-step spatio-temporal parameters of normal and impaired gait using shank-mounted magneto-inertial sensors: application to elderly, hemiparetic, parkinsonian and choreic gait. Journal of neuroengineering and rehabilitation. 2014;11(1):152.

42. Yang C-C, Hsu Y-L. A review of accelerometry-based wearable motion detectors for physical activity monitoring. Sensors. 2010;10(8):7772–88. doi: 10.3390/s100807772 22163626


Článek vyšel v časopise

PLOS One


2019 Číslo 12