Subtle changes in striatal muscarinic M1 and M4 receptor expression in the DYT1 knock-in mouse model of dystonia

Autoři: Franziska Richter aff001;  Laura Klein aff001;  Christin Helmschrodt aff001;  Angelika Richter aff001
Působiště autorů: Institute of Pharmacology, Pharmacy and Toxicology, Faculty of Veterinary Medicine, University of Leipzig, Leipzig, Germany aff001;  Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, Hannover, Germany aff002
Vyšlo v časopise: PLoS ONE 14(12)
Kategorie: Research Article


In early-onset generalized torsion dystonia, caused by a GAG deletion in TOR1A (DYT1), enhanced striatal cholinergic activity has been suggested to be critically involved. Previous studies have shown increased acetylcholine levels in the striatum of DYT1 knock-in (KI) mice. Ex vivo data indicated that muscarinic receptor antagonists normalize the activity of striatal cholinergic interneurons. Currently receptor subtype specific antagonists are developed for therapy, however, it is yet unknown whether the levels of targeted receptors are unaltered. In the present study, we firstly examined the expression of M1 and M4 receptors in DYT1 KI mice in comparison to wildtype mice. While no changes in mRNA were found in the motor cortex, the expression of M1 was higher in the striatum of DYT1 KI. However, M1 protein did not differ in striatum and cortex between the animal groups as shown by immunohistochemistry and western blot. M4 receptor protein, unaltered in the cortex, was slightly lower in lateral subparts of the striatum, but unchanged in somata of cholinergic interneurons and substance P immunoreactive projection neurons. Functional alterations of the cholinergic system and of aberrant striatal plasticity, demonstrated by previous studies, seem not to be related to overt changes in M1 and M4 expression. This critically informs the ongoing development of respective antagonists for therapy of dystonia.

Klíčová slova:

Fluorescence imaging – Cholinergics – Immunohistochemistry techniques – Mouse models – Neostriatum – Neurons – Muscarinic acetylcholine receptors – Dystonia


1. Breakefield XO, Blood AJ, Li Y, Hallett M, Hanson PI, Standaert DG. The pathophysiological basis of dystonias. Nat Rev Neurosci. 2008;9(3):222–34. doi: 10.1038/nrn2337 18285800

2. Peterson DA, Sejnowski TJ, Poizner H. Convergent evidence for abnormal striatal synaptic plasticity in dystonia. Neurobiol Dis. 2010;37(3):558–73. doi: 10.1016/j.nbd.2009.12.003 20005952

3. Eskow Jaunarajs KL, Bonsi P, Chesselet MF, Standaert DG, Pisani A. Striatal cholinergic dysfunction as a unifying theme in the pathophysiology of dystonia. Progress in neurobiology. 2015;127–128:91–107.

4. Richter F, Richter A. Genetic animal models of dystonia: common features and diversities. Progress in neurobiology. 2014;121:91–113. doi: 10.1016/j.pneurobio.2014.07.002 25034123

5. Scarduzio M, Zimmerman CN, Jaunarajs KL, Wang Q, Standaert DG, McMahon LL. Strength of cholinergic tone dictates the polarity of dopamine D2 receptor modulation of striatal cholinergic interneuron excitability in DYT1 dystonia. Exp Neurol. 2017;295:162–75. doi: 10.1016/j.expneurol.2017.06.005 28587876

6. Richter F, Bauer A, Perl S, Schulz A, Richter A. Optogenetic augmentation of the hypercholinergic endophenotype in DYT1 knock-in mice induced erratic hyperactive movements but not dystonia. EBioMedicine. 2019;41:649–58. doi: 10.1016/j.ebiom.2019.02.042 30819512

7. van Koppen CJ, Kaiser B. Regulation of muscarinic acetylcholine receptor signaling. Pharmacology & therapeutics. 2003;98(2):197–220.

8. Pisani A, Bernardi G, Ding J, Surmeier DJ. Re-emergence of striatal cholinergic interneurons in movement disorders. Trends Neurosci. 2007;30(10):545–53. doi: 10.1016/j.tins.2007.07.008 17904652

9. Ztaou S, Maurice N, Camon J, Guiraudie-Capraz G, Kerkerian-Le Goff L, Beurrier C, et al. Involvement of Striatal Cholinergic Interneurons and M1 and M4 Muscarinic Receptors in Motor Symptoms of Parkinson's Disease. J Neurosci. 2016;36(35):9161–72. doi: 10.1523/JNEUROSCI.0873-16.2016 27581457

10. Pancani T, Bolarinwa C, Smith Y, Lindsley CW, Conn PJ, Xiang Z. M4 mAChR-mediated modulation of glutamatergic transmission at corticostriatal synapses. ACS Chem Neurosci. 2014;5(4):318–24. doi: 10.1021/cn500003z 24528004

11. Goodchild RE, Kim CE, Dauer WT. Loss of the dystonia-associated protein torsinA selectively disrupts the neuronal nuclear envelope. Neuron. 2005;48(6):923–32. doi: 10.1016/j.neuron.2005.11.010 16364897

12. Helmschrodt C, Hobel S, Schoniger S, Bauer A, Bonicelli J, Gringmuth M, et al. Polyethylenimine Nanoparticle-Mediated siRNA Delivery to Reduce alpha-Synuclein Expression in a Model of Parkinson's Disease. Molecular therapy Nucleic acids. 2017;9:57–68. doi: 10.1016/j.omtn.2017.08.013 29246324

13. Perl S, Richter F, Gericke B, Richter A. Expression of metabotropic glutamate 5 receptors in the striatum and cortex and effects of modulators on the severity of dystonia in the phenotypic dt(sz) model. Eur J Pharmacol. 2019;859:172527. doi: 10.1016/j.ejphar.2019.172527 31283933

14. Bode C, Richter F, Sprote C, Brigadski T, Bauer A, Fietz S, et al. Altered postnatal maturation of striatal GABAergic interneurons in a phenotypic animal model of dystonia. Exp Neurol. 2017;287(Pt 1):44–53. doi: 10.1016/j.expneurol.2016.10.013 27780732

15. Hamann M, Plank J, Richter F, Bode C, Smiljanic S, Creed M, et al. Alterations of M1 and M4 acetylcholine receptors in the genetically dystonic (dt(sz)) hamster and moderate antidystonic efficacy of M1 and M4 anticholinergics. Neuroscience. 2017;357:84–98. doi: 10.1016/j.neuroscience.2017.05.051 28596119

16. Hersch SM, Gutekunst CA, Rees HD, Heilman CJ, Levey AI. Distribution of m1-m4 muscarinic receptor proteins in the rat striatum: light and electron microscopic immunocytochemistry using subtype-specific antibodies. J Neurosci. 1994;14(5 Pt 2):3351–63.

17. Levey AI, Kitt CA, Simonds WF, Price DL, Brann MR. Identification and localization of muscarinic acetylcholine receptor proteins in brain with subtype-specific antibodies. J Neurosci. 1991;11(10):3218–26. 1941081

18. Gernert M, Richter A, Loscher W. Alterations in spontaneous single unit activity of striatal subdivisions during ontogenesis in mutant dystonic hamsters. Brain Res. 1999;821(2):277–85. doi: 10.1016/s0006-8993(99)01080-x 10064814

19. Jankovic J. Medical treatment of dystonia. Mov Disord. 2013;28(7):1001–12. doi: 10.1002/mds.25552 23893456

20. Moehle MS, Conn PJ. Roles of the M4 acetylcholine receptor in the basal ganglia and the treatment of movement disorders. Mov Disord. 2019;34(8):1089–99. doi: 10.1002/mds.27740 31211471

21. Yalcin-Cakmakli G, Rose SJ, Villalba RM, Williams L, Jinnah HA, Hess EJ, et al. Striatal Cholinergic Interneurons in a Knock-in Mouse Model of L-DOPA-Responsive Dystonia. Frontiers in systems neuroscience. 2018;12:28. doi: 10.3389/fnsys.2018.00028 29997483

22. Volpicelli-Daley LA, Hrabovska A, Duysen EG, Ferguson SM, Blakely RD, Lockridge O, et al. Altered striatal function and muscarinic cholinergic receptors in acetylcholinesterase knockout mice. Mol Pharmacol. 2003;64(6):1309–16. doi: 10.1124/mol.64.6.1309 14645660

23. Kobayashi H, Suzuki T, Sakamoto M, Hashimoto W, Kashiwada K, Sato I, et al. Brain regional acetylcholinesterase activity and muscarinic acetylcholine receptors in rats after repeated administration of cholinesterase inhibitors and its withdrawal. Toxicol Appl Pharmacol. 2007;219(2–3):151–61. doi: 10.1016/j.taap.2006.11.006 17188317

24. Downs AM, Fan X, Donsante C, Jinnah HA, Hess EJ. Trihexyphenidyl rescues the deficit in dopamine neurotransmission in a mouse model of DYT1 dystonia. Neurobiol Dis. 2019;125:115–22. doi: 10.1016/j.nbd.2019.01.012 30707939

25. Martella G, Maltese M, Nistico R, Schirinzi T, Madeo G, Sciamanna G, et al. Regional specificity of synaptic plasticity deficits in a knock-in mouse model of DYT1 dystonia. Neurobiol Dis. 2014;65:124–32. doi: 10.1016/j.nbd.2014.01.016 24503369

26. Yokoi F, Dang MT, Liu J, Gandre JR, Kwon K, Yuen R, et al. Decreased dopamine receptor 1 activity and impaired motor-skill transfer in Dyt1 DeltaGAG heterozygous knock-in mice. Behav Brain Res. 2015;279:202–10. doi: 10.1016/j.bbr.2014.11.037 25451552

Článek vyšel v časopise


2019 Číslo 12
Nejčtenější tento týden