Composition and structure of the culturable gut bacterial communities in Anopheles albimanus from Colombia


Autoři: Yadira Galeano-Castañeda aff001;  Paula Urrea-Aguirre aff001;  Stefani Piedrahita aff001;  Priscila Bascuñán aff001;  Margarita M. Correa aff001
Působiště autorů: Grupo de Microbiología Molecular, Escuela de Microbiología, Universidad de Antioquia, Medellín, Colombia aff001
Vyšlo v časopise: PLoS ONE 14(12)
Kategorie: Research Article
doi: 10.1371/journal.pone.0225833

Souhrn

The understanding of factors affecting the gut bacterial communities in malaria vectors is essential for the design of vector control interventions, such as those based on a paratransgenic approach. One of the requirements of this method is the availability of bacteria from the mosquito susceptible to culture. Thus, the aim of this study was to evaluate the composition and structure of the culturable gut bacterial communities in field mosquitoes Anopheles albimanus from Colombia, in addition to generate a bacterial collection to further analyze microbial functional activity. Gut bacteria were isolated from An. albimanus larvae and adult mosquitoes collected in localities of the Atlantic and Pacific Coasts. The bacterial isolates were grouped in 28 morphospecies that corresponded to three phyla, three classes, nine families and 14 genera. The larvae guts from San Antero (Atlantic Coast) and Buenaventura (Pacific Coast) shared the genera Bacillus and Lysinibacillus and in adults, Bacillus and Bacillus cereus Group were registered in both localities. Gut bacterial richness was higher in adults from the Pacific with respect to the Atlantic Coast, while larval richness was similar in samples of both coasts. The Shannon index indicated uniformity in morphospecies abundances in both localities. Finally, the characterization of morphospecies from the gut of Anopheles albimanus mosquitoes from Colombia by culture-dependent methods complemented with 16S rRNA gene sequencing allowed the definition, at a finer resolution, of the composition and structure of these microbial communities. In addition, the obtained bacterial culture collection will allow further evaluation of the microorganisms for their potential as biocontrol agents.

Klíčová slova:

Antibiotic resistance – Bacillus cereus – Bacteria – Enterobacter – Gut bacteria – Larvae – Mosquitoes – Serratia


Zdroje

1. Coon KL, Vogel KJ, Brown MR, Strand MR. Mosquitoes rely on their gut microbiota for development. Mol Ecol. 2014;23(11):2727–39. wiley.com/ doi: 10.1111/mec.12771 24766707

2. Minard G, Mavingui P, Moro CV. Diversity and function of bacterial microbiota in the mosquito holobiont. Parasit Vectors. 2013;6(1):146. doi: 10.1186/1756-3305-6-146 23688194

3. Rodgers FH, Gendrin M, Wyer CAS, Christophides GK. Microbiota-induced peritrophic matrix regulates midgut homeostasis and prevents systemic infection of malaria vector mosquitoes. PLoS Pathog. 2017;13(5):1–22. doi: 10.1371/journal.ppat.1006391

4. Baia-Da-Silva DC, Alvarez LCS, Lizcano OV, Costa FTM, Lopes SCP, Orfanó AS, et al. The role of the peritrophic matrix and red blood cell concentration in Plasmodium vivax infection of Anopheles aquasalis. Parasit Vectors. 2018;11(1):1–10. doi: 10.1186/s13071-017-2573-y

5. Jupatanakul N, Sim S, Dimopoulos G. The insect microbiome modulates vector competence for arboviruses. Viruses. 2014;6(11):4294–313. doi: 10.3390/v6114294 25393895

6. Dong Y, Manfredini F, Dimopoulos G. Implication of the mosquito midgut microbiota in the defense against malaria parasites. PLoS Pathog. 2009;5(5):e1000423. doi: 10.1371/journal.ppat.1000423 19424427

7. Bahia AC, Dong Y, Blumberg BJ, Mlambo G, Tripathi A, Benmarzouk-Hidalgo OJ, et al. Exploring Anopheles gut bacteria for Plasmodium blocking activity. Environ Microbiol. 2014;16(9):2980–94. doi: 10.1111/1462-2920.12381 24428613

8. Cirimotich CM, Clayton AM, Dimopoulos G. Low- and high-tech approaches to control Plasmodium parasite transmission by Anopheles mosquitoes. J Trop Med. 2011:891342. doi: 10.1155/2011/891342 21876705

9. Cirimotich CM, Dong Y, Clayton AM, Sandiford SL, Souza-Neto J a, Mulenga M, et al. Natural microbe-mediated refractoriness to Plasmodium infection in Anopheles gambiae. Science. 2011;332(6031):855–8. doi: 10.1126/science.1201618 21566196

10. Eappen AG, Smith RC, Jacobs-Lorena M. Enterobacter-activated mosquito immune responses to Plasmodium involve activation of SRPN6 in Anopheles stephensi. PLoS One. 2013;8(5):1–8. doi: 10.1371/journal.pone.0062937

11. Hurwitz I, Fieck A, Read A, Hillesland H, Klein N, Kang A, et al. Paratransgenic control of vector borne diseases. Int. J. Biol. Sci. 2011;7(9):1334–1344.

12. Wang S, Dos-Santos A, Huang W, Liu K, Oshaghi M, Wei G, et al. Driving mosquito refractoriness to Plasmodium falciparum with engineered symbiotic bacteria. Science. 2017; 357: 1399–1402. doi: 10.1126/science.aan5478 28963255

13. Chavshin AR, Oshaghi MA, Vatandoost H, Pourmand MR, Raeisi A, Enayati AA, et al. Identification of bacterial microflora in the midgut of the larvae and adult of wild caught Anopheles stephensi: a step toward finding suitable paratransgenesis candidates. Acta Trop. 2012;121(2):129–34. doi: 10.1016/j.actatropica.2011.10.015 22074685

14. Favia G, Ricci I, Damiani C, Raddadi N, Crotti E, Marzorati M, et al. Bacteria of the genus Asaia stably associate with Anopheles stephensi, an Asian malarial mosquito Proc Natl Acad Sci U S A. 2007;104(21):9047–51. doi: 10.1073/pnas.0610451104 17502606

15. Damiani C, Ricci I, Crotti E, Rossi P, Rizzi A, Scuppa P, et al. Mosquito-bacteria symbiosis: the case of Anopheles gambiae and Asaia. Microb Ecol. 2010;60(3):644–54. doi: 10.1007/s00248-010-9704-8 20571792

16. Chouaia B, Rossi P, Epis S, Mosca M, Ricci I, Damiani C, et al. Delayed larval development in Anopheles mosquitoes deprived of Asaia bacterial symbionts. BMC Microbiol. 2012;12 Suppl 1: S2. doi: 10.1186/1471-2180-12-S1-S2 22375964

17. Damiani C, Ricci I, Crotti E, Rossi P, Rizzi A, Scuppa P, et al. Paternal transmission of symbiotic bacteria in malaria vectors. Curr Biol. 2008;18(23):R1087–8. doi: 10.1016/j.cub.2008.10.040 19081038

18. Capone A, Ricci I, Damiani C, Mosca M, Rossi P, Scuppa P, et al. Interactions between Asaia, Plasmodium and Anopheles: New insights into mosquito symbiosis and implications in malaria symbiotic control. Parasit Vectors. 2013; 18;6(1):182. doi: 10.1186/1756-3305-6-182 23777746

19. Mancini MV, Spaccapelo R, Damiani C, Accoti A, Tallarita M, Petraglia E, et al. Paratransgenesis to control malaria vectors: A semi-field pilot study. Parasit Vectors. 2016; 10;9:140. doi: 10.1186/s13071-016-1427-3 26965746

20. Lindh JM, Terenius O, Faye I. 16S rRNA gene-based identification of midgut bacteria from field-caught Anopheles gambiae sensu lato and A. funestus mosquitoes reveals new species related to known insect symbionts. Appl Environ Microbiol. 2005;71(11):7217–23. doi: 10.1128/AEM.71.11.7217-7223.2005 16269761

21. Villegas LM, Pimenta PF. Metagenomics, paratransgenesis and the Anopheles microbiome: A portrait of the geographical distribution of the anopheline microbiota based on a meta-analysis of reported taxa. Mem Inst Oswaldo Cruz. 2014;109(5):672–84. doi: 10.1590/0074-0276140194 25185007

22. Bascuñán P, Niño-Garcia JP, Galeano-Castañeda Y, Serre D, Correa MM. Factors shaping the gut bacterial community assembly in two main Colombian malaria vectors. Microbiome. 2018;6(1):1–12. doi: 10.1186/s40168-017-0383-2

23. Tchioffo MT, Bayibéki AN, Awono-Ambéné PH, Abate L, Christen R, Boissière A, et al. Dynamics of bacterial community composition in the malaria mosquito’s epithelia. Front Microbiol. 2016;6:1500. doi: 10.3389/fmicb.2015.01500 26779155

24. Rani A, Sharma A, Rajagopal R, Adak T, Bhatnagar RK. Bacterial diversity analysis of larvae and adult midgut microflora using culture-dependent and culture-independent methods in lab-reared and field-collected Anopheles stephensi-an Asian malarial vector. BMC Microbiol. 2009;9:96. doi: 10.1186/1471-2180-9-96 19450290

25. Wang Y, Gilbreath TM, Kukutla P, Yan G, Xu J. Dynamic gut microbiome across life history of the malaria mosquito Anopheles gambiae in Kenya. PLoS One. 2011;6(9):1–9.

26. Terenius O, Oliveira CD, Pinheiro WD, Tadei WP, James AA, Marinotti O. 16S rRNA gene sequences from bacteria associated with adult Anopheles darlingi (Diptera: Culicidae) mosquitoes. J Med Entomol. 2008;45(1):172–5. doi: 10.1603/0022-2585(2008)45[172:srgsfb]2.0.co;2 18283961

27. González-Cerón L, Santillan F, Rodríguez MH, Hernández-Avila JE. Bacteria in midguts of field-collected Anopheles albimanus block Plasmodium vivax sporogonic development. J Med Entomol. 2003;40(3):371–4. doi: 10.1603/0022-2585-40.3.371 12943119

28. Instituto Geográfico Agustín Codazzi (2009) Atlas de Colombia. 5th ed. Imprenta Nacional de Colombia. 342 p.

29. Gonzalez R, Carrejo N (2009) Introducción al estudio taxonómico de Anopheles de Colombia claves y notas de distribución. 2nd ed. Cali: Universidad del Valle. 260 p.

30. Rosero DA, Gutiérrez LA, Cienfuegos AV, Jaramillo LM, Correa MM. Optimización de un procedimiento de extracción de ADN para mosquitos anofelinos. 2010;36(53):260–3.

31. Cienfuegos AV, Gómez GF, Córdoba LA, Luckhart S, Conn JE, Correa MM. Diseño y evaluación de metodologías basadas en PCR-RFLP de ITS2 para la identificación molecular de mosquitos Anopheles spp. Diptera: (Culicidae) de la Costa Pacífica de Colombia. Biomed 2008; 19:35–44.

32. Gutiérrez LA, Naranjo N, Jaramillo LM, Muskus C, Luckhart S, Conn JE, et al. Natural infectivity of Anopheles species from the Pacific and Atlantic regions of Colombia. Acta Trop. 2008;107(2):99–105. doi: 10.1016/j.actatropica.2008.04.019 18554564

33. Frederick M, Roger B, Kingston E, Moore D, Seidman J, Smith JA, et al (2003). Current Protocols in Molecular Biology. John Wiley & Sons, Inc. 1600 p.

34. Weisburg WG, Barns SM, Pelletie DA, Lane DJ, Pelletier DA., Lane DJ. 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol. 1991;173(2):697–703. doi: 10.1128/jb.173.2.697-703.1991 1987160

35. Kearse M, Moir R, Wilson A, Stones-Havas S, Cheung M, Sturrock S, et al. Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics. 2012; 28: 1647–9. doi: 10.1093/bioinformatics/bts199 22543367.

36. Ronquist F, Eslenko M, Ark P, Yres D, Arling AA. MrBayes 3.2: Efficient bayesian phylogenetic inference and model choice across a large model space. Syst. Biol. 2012;61(3):539–542. doi: 10.1093/sysbio/sys029 22357727

37. Darriba D, Taboada GL, Doallo R, Posada D. jModelTest 2: more models, new heuristics and high- performance computing. Nat. Methods. 2012;9(8), 6–9. doi: 10.1038/nmeth.2109.jModelTest

38. Hammer Ø, Harper DAT, Ryan PD. PAST: Paleontological statistics software package. Palaeontol Electron. 1999;4(1):9.

39. Chazdon RL, Colwell RK, Chao A, Mao CX, Lin SY, Longino JT, et al. Models and estimators linking individual-based and sample-based rarefaction, extrapolation and comparison of assemblages. J Plant Ecol. 2012;5(1):3–21.

40. Pidiyar VJ, Jangid K, Patole MS, Shouche YS. Studies on cultured and uncultured microbiota of wild Culex quinquefasciatus mosquito midgut based on 16S ribosomal RNA gene analysis. Am J Trop Med Hyg. 2004;70(6):597–603. 15210998

41. Zouache K, Raharimalala FN, Raquin V, Tran-Van V, Raveloson LHR, Ravelonandro P, et al. Bacterial diversity of field-caught mosquitoes, Aedes albopictus and Aedes aegypti, from different geographic regions of Madagascar. FEMS Microbiol Ecol. 2011;75(3):377–89. doi: 10.1111/j.1574-6941.2010.01012.x 21175696

42. Ngo CT, Romano-Bertrand S, Manguin S, Jumas-Bilak E. Diversity of the bacterial microbiota of Anopheles mosquitoes from Binh Phuoc Province, Vietnam. Front. Microbiol. 2016; 7:2095. doi: 10.3389/fmicb.2016.02095 28066401

43. Gaio A, Gusmão DS, Santos AV, Berbert-molina MA, Pimenta PF, Lemos FJA. Contribution of midgut bacteria to blood digestion and egg production in Aedes aegypti (Diptera: Culicidae) (L.). Parasit Vectors 2011; 4:105. doi: 10.1186/1756-3305-4-105 21672186

44. Camacho-Millán R, Aguilar-Medina EM, Quezada E, Medina-Contreras O, Cárdenas-Cota HM et al. Characterization of Cry toxins from autochthonous Bacillus thuringiensis isolates from Mexico. Bol Med Hosp Infant Mex. 2017;74(3):193–99. doi: 10.1016/j.bmhimx.2017.03.002 29382486

45. Berry C. The bacterium, Lysinibacillus sphaericus, as an insect pathogen. J. Invertebr. Pathol.2011,109:1–10. doi: 10.1016/j.jip.2011.11.008 22137877

46. Pal D, Bhardwaj A, Kaur N, Sudan SK, Bisht B, Kumari, et al. Fictibacillus aquaticus sp. nov., isolated from downstream river water. Int J Syst Evol Microbiol. 2018;68(1):160–164. doi: 10.1099/ijsem.0.002474 29116040

47. Astager SG, Mawlankar R, Srinivasan K, Tang SK, Lee JC, Ramana VV. Fictibacillus enclensis sp. nov., isolated from marine sediment. Antonie Van Leeuwenhoek 2014;105(3):461–9. doi: 10.1007/s10482-013-0097-9 24343101

48. Faran M: Mosquitos studies (Diptera, Culicidae) XXXIV. A revision of the Albimanus section of the subgenus Nyssorhynchus of Anopheles. Contrib Amer Ent Inst 1980;15:1–215.

49. Kanehisa M, Sato Y, Furumichi M, Morishima K, Tanabe M. New approach for understanding genome variations in KEGG. Nucleic Acids Res. 2019;8;47(D1):D590–D595. doi: 10.1093/nar/gky962 [Internet]. Available from: https://www.genome.jp/keggin/show_pathway?org_name=map&mapno=04630&mapscale=&show_description=hide.%20201AD. 30321428

50. Bahia AC, Kubota MS, Tempone AJ, Araújo HRC, Guedes BAM, Orfanó AS, et al. The JAK-STAT pathway controls Plasmodium vivax load in early stages of Anopheles aquasalis infection. PLoS Negl Trop Dis. 2011;5(11). doi: 10.1371/journal.pntd.0001317 22069502

51. Broderick NA, Lemaitre B. Gut-associated microbes of Drosophila melanogaster Landes Bioscience. 2012;3(4):307–21.

52. Masson-Boivin C, Giraud E, Perret X, Batut J. Establishing nitrogen-fixing symbiosis with legumes: how many rhizobium recipes? Trends Microbiol. 2009;17(10):458–66. doi: 10.1016/j.tim.2009.07.004 19766492

53. Galeano-Castañeda Y, Bacuñán P, Serre D, Correa MM. Trans-stadial fate of the gut bacterial microbiota in Anopheles albimanus. Acta Trop. 2020; 201. doi: 10.1016/j.actatropica.2019.105204

54. Boissière A, Tchioffo MT, Bachar D, Abate L, Marie A, et al. Midgut microbiota of the malaria mosquito vector Anopheles gambiae and interactions with Plasmodium falciparum infection. PLoS Pathog. 2012; 8(5): e1002742. doi: 10.1371/journal.ppat.1002742 22693451

55. Bergquist H, Faye I, Titanji K, Terenius O, Lindh JM, Laugen AT, et al. Midgut bacterial dynamics in Aedes aegypti. FEMS Microbiol Ecol. 2012;80(3):556–65. doi: 10.1111/j.1574-6941.2012.01317.x 22283178

56. Madhaiyan M, Poonguzhali S, Lee JS, Saravanan VS, Lee KC, Santhanakrishnan P. Enterobacter arachidis sp. nov., a plant-growth-promoting diazotrophic bacterium isolated from rhizosphere soil of groundnut. Int J Syst Evol Microbiol. 2010;60(7):1559–64.

57. Manter Daniel K., “Enterobacter soli sp. nov.: A lignin-degrading γ-Proteobacteria isolated from soil,” Curr. Microbiol., 2011; 62(3):1044–9. doi: 10.1007/s00284-010-9809-9 21104086

58. Benjakul S, Tanasupawat S, Kittikun A, Bourneow C, Khunthongpan S, Sumpavapol P. Enterobacter siamensis sp. nov., a transglutaminase-producing bacterium isolated from seafood processing wastewater in Thailand. J Gen Appl Microbiol. 2013;59(2):135–40. doi: 10.2323/jgam.59.135 23759866

59. Zhu B, Zhou Q, Lin L, Hu C, Shen P, Yang L, et al. Enterobacter sacchari sp. nov., a nitrogen-fixing bacterium associated with sugar cane (Saccharum officinarum L.). Int J Syst Evol Microbiol. 2013;63:2577–82. doi: 10.1099/ijs.0.045500-0 23291881

60. Zhu B, Lou MM, Xie GL, Wang GF, Zhou Q, Wang F, et al. Enterobacter mori sp. nov., associated with bacterial wilt on Morus alba L. Int J Syst Evol Microbiol. 2011;61(11):2769–74.

61. Rosenblueth M, Martínez L, Silva J, Martínez-Romero E. Klebsiella variicola, a novel species with clinical and plant-associated isolates. Syst Appl Microbiol. 2004;27(1):27–35. doi: 10.1078/0723-2020-00261 15053318

62. Akorli J, Gendrin M, Pels NAP, Yeboah-Manu D, Christophides GK, Wilson MD. Seasonality and locality affect the diversity of Anopheles gambiae and Anopheles coluzzii midgut microbiota from Ghana. PLoS One. 2016;20;11(6):e0157529. doi: 10.1371/journal.pone.0157529 27322614

63. Buck M, Nilsson LKJ, Brunius C, Dabiré RK, Hopkins R, Terenius O. Bacterial associations reveal spatial population dynamics in Anopheles gambiae mosquitoes. Sci Rep. 2016;6(1):22806.doi.org/10.1038/srep22806.

64. Dada N, Sheth M, Liebman K, Pinto J, Lenhart A. Whole metagenome sequencing reveals links between mosquito microbiota and insecticide resistance in malaria vectors. Sci. Rep. 2018;8(1)13. doi: 10.1038/s41598-017-18467-8

65. Guégan M, Zouache K, Démichel C, Minard G, Tran Van V, Potier P, et al. The mosquito holobiont: fresh insight into mosquito-microbiota interactions. Microbiome. 2018;6(1):49. doi: 10.1186/s40168-018-0435-2 29554951

66. Muturi E, Ramirez J, Rooney A, Kim C. Comparative analysis of gut microbiota of mosquito communities in central Illinois. PLoS Negl. Trop. Dis. 2017; 11(2): e0005377. doi: 10.1371/journal.pntd.0005377 28245239

67. Stathopoulos S, Neafsey DE, Lawniczak MK, Muskavitch MA, Christophides GK. Genetic dissection of Anopheles gambiae gut epithelial responses to Serratia marcescens. PLoS Pathog. 2014; 10(3): e1003897. doi: 10.1371/journal.ppat.1003897 24603764


Článek vyšel v časopise

PLOS One


2019 Číslo 12