#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

PTH1-34 improves bone healing by promoting angiogenesis and facilitating MSCs migration and differentiation in a stabilized fracture mouse model


Autoři: Xin Jiang aff001;  Cuidi Xu aff001;  Hongli Shi aff001;  Qun Cheng aff001
Působiště autorů: Department of Osteoporosis and Bone Disease, Huadong Hospital Affiliated to Fudan University, Research Section of Geriatric Metabolic Bone Disease, Shanghai Geriatric Institute, Shanghai, China aff001
Vyšlo v časopise: PLoS ONE 14(12)
Kategorie: Research Article
doi: https://doi.org/10.1371/journal.pone.0226163

Souhrn

Objective

PTH1-34 (parathyroid hormone 1–34) is the only clinical drug to promote osteogenesis. MSCs (mesenchymal stem cells) have multidirectional differentiation potential and are closely related to fracture healing. This study was to explore the effects of PTH1-34 on proliferation and differentiation of endothelial cells and MSCs in vitro, and on angiogenesis, and MSCs migration during fracture healing in vivo.

Methods

Mice with stabilized fracture were assigned to 4 groups: CON, PTH (PTH1-34 40 μg/kg/day), MSC (transplanted with 105 MSCs), PTH+MSCs. Mice were sacrificed 14 days after fracture, and callus tissues were harvested for microCT scan and immunohistochemistry analysis. The effects of PTH1-34 on angiogenesis, and MSCs differentiation and migration were assessed by wound healing, tube formation and immunofluorescence staining.

Results

Treatment with either PTH1-34, or MSCs promoted bone healing and vascular formation in fracture callus. The callus bone mass, bone volume, and bone mineral density were all greater in PTH and/or MSC groups than they were in CON (p<0.05). PTH1-34 increased small vessels formation (diameter ≤50μm), whereas MSCs increased the large ones (diameter >50μm). Expression of CD31 within calluses and trabecular bones were significantly higher in PTH1-34 treated group than that of not (p<0.05). Expression of CD31, VEGFR, VEGFR2, and vWF was upregulated, and wound healing and tube formation were increased in MSCs treated with PTH1-34 compared to that of control.

Conclusions

PTH1-34 improved the proliferation and differentiation of endothelial cells and MSCs, enhancing migration of MSCs to bone callus to promote angiogenesis and osteogenesis, and facilitating fracture healing.

Klíčová slova:

Angiogenesis – Bone fracture – Cell differentiation – Endothelial cells – Mesenchymal stem cells – Mouse models – Ossification – Tissue repair


Zdroje

1. Westgeest J, Weber D, Dulai SK, Bergman JW, Buckley R, Beaupre LA. Factors Associated With Development of Nonunion or Delayed Healing After an Open Long Bone Fracture: A Prospective Cohort Study of 736 Subjects. J Orthop Trauma. 2016;30(3):149–55. Epub 2015/11/07. doi: 10.1097/BOT.0000000000000488 26544953.

2. Hak DJ, Fitzpatrick D, Bishop JA, Marsh JL, Tilp S, Schnettler R, et al. Delayed union and nonunions: epidemiology, clinical issues, and financial aspects. Injury. 2014;45 Suppl 2:S3–7. Epub 2014/05/27. doi: 10.1016/j.injury.2014.04.002 24857025.

3. Kanakaris NK, Giannoudis PV. The health economics of the treatment of long-bone non-unions. Injury. 2007;38 Suppl 2:S77–84. Epub 2007/10/09. doi: 10.1016/s0020-1383(07)80012-x 17920421.

4. Chen W, Xu K, Tao B, Dai L, Yu Y, Mu C, et al. Multilayered coating of titanium implants promotes coupled osteogenesis and angiogenesis in vitro and in vivo. Acta Biomater. 2018;74:489–504. Epub 2018/04/28. doi: 10.1016/j.actbio.2018.04.043 29702291.

5. Hankenson KD, Dishowitz M, Gray C, Schenker M. Angiogenesis in bone regeneration. Injury. 2011;42(6):556–61. Epub 2011/04/15. doi: 10.1016/j.injury.2011.03.035 21489534; PubMed Central PMCID: PMC3105195.

6. Dent-Acosta RE, Storm N, Steiner RS, San Martin J. The tactics of modern-day regulatory trials. J Bone Joint Surg Am. 2012;94 Suppl 1:39–44. Epub 2012/08/01. doi: 10.2106/JBJS.L.00194 22810446.

7. Ogata Y, Mabuchi Y, Yoshida M, Suto EG, Suzuki N, Muneta T, et al. Purified Human Synovium Mesenchymal Stem Cells as a Good Resource for Cartilage Regeneration. PLoS One. 2015;10(6):e0129096. Epub 2015/06/09. doi: 10.1371/journal.pone.0129096 26053045; PubMed Central PMCID: PMC4459808.

8. Paino F, La Noce M, Giuliani A, De Rosa A, Mazzoni S, Laino L, et al. Human DPSCs fabricate vascularized woven bone tissue: a new tool in bone tissue engineering. Clin Sci (Lond). 2017;131(8):699–713. Epub 2017/02/18. doi: 10.1042/CS20170047 28209631; PubMed Central PMCID: PMC5383003.

9. Mortada I, Mortada R. Epigenetic changes in mesenchymal stem cells differentiation. Eur J Med Genet. 2018;61(2):114–8. Epub 2017/10/29. doi: 10.1016/j.ejmg.2017.10.015 29079547.

10. Sun X, Luo LH, Feng L, Li DS. Down-regulation of lncRNA MEG3 promotes endothelial differentiation of bone marrow derived mesenchymal stem cells in repairing erectile dysfunction. Life Sci. 2018;208:246–52. Epub 2018/07/18. doi: 10.1016/j.lfs.2018.07.024 30012476.

11. Ramasamy SK, Kusumbe AP, Schiller M, Zeuschner D, Bixel MG, Milia C, et al. Blood flow controls bone vascular function and osteogenesis. Nat Commun. 2016;7:13601. Epub 2016/12/07. doi: 10.1038/ncomms13601 27922003; PubMed Central PMCID: PMC5150650.

12. Donneys A, Tchanque-Fossuo CN, Farberg AS, Deshpande SS, Buchman SR. Bone regeneration in distraction osteogenesis demonstrates significantly increased vascularity in comparison to fracture repair in the mandible. J Craniofac Surg. 2012;23(1):328–32. Epub 2012/02/18. doi: 10.1097/SCS.0b013e318241db26 22337436; PubMed Central PMCID: PMC3502076.

13. Ren Y, Liu B, Feng Y, Shu L, Cao X, Karaplis A, et al. Endogenous PTH deficiency impairs fracture healing and impedes the fracture-healing efficacy of exogenous PTH(1–34). PLoS One. 2011;6(7):e23060. Epub 2011/08/11. doi: 10.1371/journal.pone.0023060 21829585; PubMed Central PMCID: PMC3146536.

14. Kakar S, Einhorn TA, Vora S, Miara LJ, Hon G, Wigner NA, et al. Enhanced chondrogenesis and Wnt signaling in PTH-treated fractures. J Bone Miner Res. 2007;22(12):1903–12. Epub 2007/08/08. doi: 10.1359/jbmr.070724 17680724.

15. Prisby R, Guignandon A, Vanden-Bossche A, Mac-Way F, Linossier MT, Thomas M, et al. Intermittent PTH(1–84) is osteoanabolic but not osteoangiogenic and relocates bone marrow blood vessels closer to bone-forming sites. J Bone Miner Res. 2011;26(11):2583–96. Epub 2011/06/30. doi: 10.1002/jbmr.459 21713994.

16. Adams GB, Martin RP, Alley IR, Chabner KT, Cohen KS, Calvi LM, et al. Therapeutic targeting of a stem cell niche. Nat Biotechnol. 2007;25(2):238–43. Epub 2007/01/24. doi: 10.1038/nbt1281 17237769.

17. Yuasa M, Mignemi NA, Barnett JV, Cates JM, Nyman JS, Okawa A, et al. The temporal and spatial development of vascularity in a healing displaced fracture. Bone. 2014;67:208–21. Epub 2014/07/16. doi: 10.1016/j.bone.2014.07.002 25016962.

18. Axelrad TW, Kakar S, Einhorn TA. New technologies for the enhancement of skeletal repair. Injury. 2007;38 Suppl 1:S49–62. Epub 2007/03/27. doi: 10.1016/j.injury.2007.02.010 17383486.

19. Sivaraj KK, Adams RH. Blood vessel formation and function in bone. Development. 2016;143(15):2706–15. Epub 2016/08/04. doi: 10.1242/dev.136861 27486231.

20. Wernike E, Montjovent MO, Liu Y, Wismeijer D, Hunziker EB, Siebenrock KA, et al. VEGF incorporated into calcium phosphate ceramics promotes vascularisation and bone formation in vivo. Eur Cell Mater. 2010;19:30–40. Epub 2010/02/24. doi: 10.22203/ecm.v019a04 20178096.

21. Guan M, Yao W, Liu R, Lam KS, Nolta J, Jia J, et al. Directing mesenchymal stem cells to bone to augment bone formation and increase bone mass. Nat Med. 2012;18(3):456–62. Epub 2012/02/07. doi: 10.1038/nm.2665 22306732; PubMed Central PMCID: PMC3755884.

22. Aspenberg P, Genant HK, Johansson T, Nino AJ, See K, Krohn K, et al. Teriparatide for acceleration of fracture repair in humans: a prospective, randomized, double-blind study of 102 postmenopausal women with distal radial fractures. J Bone Miner Res. 2010;25(2):404–14. Epub 2009/07/15. doi: 10.1359/jbmr.090731 19594305.

23. Jung Y, Wang J, Schneider A, Sun YX, Koh-Paige AJ, Osman NI, et al. Regulation of SDF-1 (CXCL12) production by osteoblasts; a possible mechanism for stem cell homing. Bone. 2006;38(4):497–508. Epub 2005/12/13. doi: 10.1016/j.bone.2005.10.003 16337237.

24. Ball SG, Shuttleworth CA, Kielty CM. Vascular endothelial growth factor can signal through platelet-derived growth factor receptors. J Cell Biol. 2007;177(3):489–500. Epub 2007/05/02. doi: 10.1083/jcb.200608093 17470632; PubMed Central PMCID: PMC2064818.

25. Rytlewski JA, Alejandra Aldon M, Lewis EW, Suggs LJ. Mechanisms of tubulogenesis and endothelial phenotype expression by MSCs. Microvasc Res. 2015;99:26–35. Epub 2015/02/26. doi: 10.1016/j.mvr.2015.02.005 25711526; PubMed Central PMCID: PMC4426083.

26. La Noce M, Mele L, Laino L, Iolascon G, Pieretti G, Papaccio G, et al. Cytoplasmic Interactions between the Glucocorticoid Receptor and HDAC2 Regulate Osteocalcin Expression in VPA-Treated MSCs. Cells. 2019;8(3). Epub 2019/03/08. doi: 10.3390/cells8030217 30841579; PubMed Central PMCID: PMC6468918.

27. Wang M, Yu Q, Wang L, Gu H. Distinct patterns of histone modifications at cardiac-specific gene promoters between cardiac stem cells and mesenchymal stem cells. Am J Physiol Cell Physiol. 2013;304(11):C1080–90. Epub 2013/04/05. doi: 10.1152/ajpcell.00359.2012 23552285.

28. Oskowitz A, McFerrin H, Gutschow M, Carter ML, Pochampally R. Serum-deprived human multipotent mesenchymal stromal cells (MSCs) are highly angiogenic. Stem Cell Res. 2011;6(3):215–25. Epub 2011/03/23. doi: 10.1016/j.scr.2011.01.004 21421339; PubMed Central PMCID: PMC4920087.

29. Ramasamy SK, Kusumbe AP, Wang L, Adams RH. Endothelial Notch activity promotes angiogenesis and osteogenesis in bone. Nature. 2014;507(7492):376–80. Epub 2014/03/22. doi: 10.1038/nature13146 24647000; PubMed Central PMCID: PMC4943529.

30. Kusumbe AP, Ramasamy SK, Adams RH. Coupling of angiogenesis and osteogenesis by a specific vessel subtype in bone. Nature. 2014;507(7492):323–8. Epub 2014/03/22. doi: 10.1038/nature13145 24646994; PubMed Central PMCID: PMC4943525.

31. Dhillon RS, Xie C, Tyler W, Calvi LM, Awad HA, Zuscik MJ, et al. PTH-enhanced structural allograft healing is associated with decreased angiopoietin-2-mediated arteriogenesis, mast cell accumulation, and fibrosis. J Bone Miner Res. 2013;28(3):586–97. Epub 2012/09/20. doi: 10.1002/jbmr.1765 22991274; PubMed Central PMCID: PMC3540116.

32. Naik AA, Xie C, Zuscik MJ, Kingsley P, Schwarz EM, Awad H, et al. Reduced COX-2 expression in aged mice is associated with impaired fracture healing. J Bone Miner Res. 2009;24(2):251–64. Epub 2008/10/14. doi: 10.1359/jbmr.081002 18847332; PubMed Central PMCID: PMC3276605.

33. Robertson G, Xie C, Chen D, Awad H, Schwarz EM, O'Keefe RJ, et al. Alteration of femoral bone morphology and density in COX-2-/- mice. Bone. 2006;39(4):767–72. Epub 2006/05/30. doi: 10.1016/j.bone.2006.04.006 16731065; PubMed Central PMCID: PMC2647994.


Článek vyšel v časopise

PLOS One


2019 Číslo 12
Nejčtenější tento týden
Nejčtenější v tomto čísle
Kurzy

Zvyšte si kvalifikaci online z pohodlí domova

KOST
Koncepce osteologické péče pro gynekology a praktické lékaře
nový kurz
Autoři: MUDr. František Šenk

Sekvenční léčba schizofrenie
Autoři: MUDr. Jana Hořínková

Hypertenze a hypercholesterolémie – synergický efekt léčby
Autoři: prof. MUDr. Hana Rosolová, DrSc.

Svět praktické medicíny 5/2023 (znalostní test z časopisu)

Imunopatologie? … a co my s tím???
Autoři: doc. MUDr. Helena Lahoda Brodská, Ph.D.

Všechny kurzy
Kurzy Podcasty Doporučená témata Časopisy
Přihlášení
Zapomenuté heslo

Zadejte e-mailovou adresu, se kterou jste vytvářel(a) účet, budou Vám na ni zaslány informace k nastavení nového hesla.

Přihlášení

Nemáte účet?  Registrujte se

#ADS_BOTTOM_SCRIPTS#