Characterization of testis-specific serine/threonine kinase 1-like (TSSK1-like) gene and expression patterns in diploid and triploid Pacific abalone (Haliotis discus hannai; Gastropoda; Mollusca) males

Autoři: Eun Jeong Kim aff001;  So Jeong Kim aff001;  Choul Ji Park aff002;  Yoon Kwon Nam aff001
Působiště autorů: Department of Marine Bio-Materials and Aquaculture, Pukyong National University, Busan, Republic of Korea aff001;  Genetics and Breeding Research Center, National Institute of Fisheries Science, Geoje, Republic of Korea aff002
Vyšlo v časopise: PLoS ONE 14(12)
Kategorie: Research Article
doi: 10.1371/journal.pone.0226022


Testis-specific serine/threonine kinase 1-like (TSSK1-like), which plays important roles in late-phase spermatogenesis and male fertility, was characterized in Pacific abalone Haliotis discus hannai, an important commercial marine gastropod. Further, its expression patterns were assessed in diploid and induced triploid males showing differential degrees of testis maturation. Abalone TSSK1-like shared conserved structural features with mammalian TSSK1s and other potential metazoan orthologs, especially regarding the catalytic STKc domain. Phylogenetically, abalone TSSK1-like displayed a genetic affiliation with its molluscan TSSK1-like orthologs and human TSSK1. Additionally, abalone TSSK1-like gene showed a tetrapartite exon-intron organization, unlike the intronless structure of most amniotic tetrapodian TSSK1s. Molecular phylogenetic analysis in the metazoan lineage suggested a possible revision in the origin of the earliest ancestral TSSK1. Further, abalone TSSK1-like showed testis-predominant expression, which was significantly influenced by both age and seasonal reproductive cycles. Comparative expression analyses between diploid and triploid abalone males suggested that robust TSSK1-like expression occurred primarily at the post-meiotic stage. Additionally, RT-PCR assay indicates that mature abalone sperms retain TSSK1-like transcripts after release. Taken together, this study provides useful insights for further studies to assess male reproduction and sterility and/or partial fertility of induced male triploidy in abalone species.

Klíčová slova:

Gene expression – Introns – Multiple alignment calculation – Phylogenetic analysis – Sequence alignment – Sperm – Testes – Triploidy


1. Visconti PE, Hao Z, Purdon MA, Stein P, Balsara BR, Testa JR, et al. Cloning and chromosomal localization of a gene encoding a novel serine/threonine kinase belonging to the subfamily of testis-specific kinases. Genomics. 2001;77: 163–170. doi: 10.1006/geno.2001.6628 11597141

2. Shang P, Baarends WM, Hoogerbrugge J, Ooms MP, Cappellen WA, Jong AAW, et al. Functional transformation of the chromatoid body in mouse spermatids requires testis-specific serine/threonine kinases. J Cell Sci. 2010;123(3): 331–339. doi: 10.1242/jcs.059949 20053632

3. Jha KN, Coleman AR, Wong L, Salicioni AM, Howcroft E, Johnson GR. Heat shock protein 90 functions to stabilize and activate the testis-specific serine/threonine kinases, a family of kinases essential for male fertility. J Biol Chem. 2013;288: 16308–16320. doi: 10.1074/jbc.M112.400978 23599433

4. Hao Z, Jha KN, Kim YH, Vemuganti S, Westbrook VA, Chertihin O, et al. Expression analysis of the human testis-specific serine/ threonine kinase (TSSK) homologues. A TSSK member is present in the equatorial segment of human sperm. Mol Hum Reprod. 2004;10: 433–444. doi: 10.1093/molehr/gah052 15044604

5. Li Y, Sosnik J, Brassard L, Reese M, Spiridonov NA, Bates TC, et al. Expression and localization of five members of the testis-specific serine kinase (TSSK) family in mouse and human sperm and testis. Mol Hum Reprod. 2011;17: 42–56. doi: 10.1093/molehr/gaq071 20729278

6. Volff JN, Brosius J. Modern genomes with retro-look: Retrotransposed elements, retroposition and the origin of new genes. Genome Dyn. 2007;3: 175–190. doi: 10.1159/000107611 18753792

7. Shang P, Hoogerbrugge J, Baarends WM, Grootegoed JA. Evolution of testis-specific kinases TSSK1B and TSSK2 in primates. Andrology. 2013;1: 160–168. doi: 10.1111/j.2047-2927.2012.00021.x 23258646

8. Han MV, Demuth JP, McGrath CL, Casola C, Hahn MW. Adaptive evolution of young gene duplicates in mammals. Genome Res. 2009;19: 859–867. doi: 10.1101/gr.085951.108 19411603

9. Ciocan CM, Cubero-Leon E, Minier C, Rotchell JM. Identification of reproduction-specific genes associated with maturation and estrogen exposure in a marine bivalve Mytilus edulis. PLoS One. 2011;6: e22326. doi: 10.1371/journal.pone.0022326 21818309

10. Li HH, Kong LF, Yu R, Yu H, Li Q. Characterization, expression, and functional analysis of testis-specific serine/threonine kinase 1 (Tssk1) in the pen shell Atrina pectinata. Invertebr Reprod Dev. 2016;60: 118–125. doi: 10.1080/07924259.2016.1161667

11. Park CJ, Kim SY. Abalone aquaculture in Korea. J. Shellfish Res. 2013;32: 17–19.

12. Cook PA. The worldwide abalone industry. Mod. Econ. 2014;5: 1181–1186.

13. Park CJ, Kwon MS, Kim EJ, Nam YK. Improvement of cold-shock treatment conditions for triploidy induction in Pacific abalone Haliotis discus hannai. Korean J. Malacol. 2018;34(4): 191–200.

14. Okumura SI, Arai K, Harigaya Y, Eguchi H, Sakai M, Senbokuya H, et al. Highly efficient induction of triploid Pacific abalone Haliotis discus hannai by caffeine treatment. Fish Sci. 2007;73: 237–243.

15. Kim SJ. Gonad development and reproductive characteristics of induced triploidy in Pacific abalone, Haliotis discus hannai. M.Sc. Thesis, Pukyong National University. 2017.

16. Lee SY, Nam YK. Transcriptional responses of metallothionein gene to different stress factors in Pacific abalone (Haliotis discus hannai). Fish Shellfish Immunol. 2016;58: 530–541. doi: 10.1016/j.fsi.2016.09.030 27693328

17. Lee SY, Nam YK. Molecular cloning of metal-responsive transcription factor-1 (MTF-1) and transcriptional responses to metal and heat stresses in Pacific abalone Haliotis discus hannai. Fish Aquatic Sci. 2017;20: 9. doi: 10.1186/s41240-017-0055-y

18. Kim H, Kim BH, Son MH, Jeon MA, Lee YG, Lee JS. Gonadal development and reproductive cycle of cultured abalone, Haliotis discus hannai (gastropoda: haliotidae) in Korea: implications for seed production. J Shellfish Res. 2016;35: 653–659. doi: 10.2983/035.035.0311

19. NFRDI. Standard manual of abalone culture. 1st ed. Busan: National Fisheries Research and Development Institute Press; 2008.

20. Schmittgen TD, Livak KJ. Analyzing real-time PCR data by the comparative CT method. Nat. Protoc. 2008;3: 1101–1108. doi: 10.1038/nprot.2008.73 18546601

21. Libus J, Štorchová H, Quantification of cDNA generated by reverse transcription of total RNA provides a simple alternative tool for quantitative RT-PCR normalization. BioTechniques. 2006;41: 156–162. doi: 10.2144/000112232 16925017

22. Roux A, Lambrechts H, Roodt-Wilding R. Reproductive histology of cultured Haliotis midae (Linnaeus, 1758) and preliminary evaluation of maturation. J Shellfish Res. 2013;32: 143–153. doi: 10.2983/035.032.0120

23. Xu B, Hao Z, Jha KN, Zhang Z, Urekar C, Digilio L, et al. Targeted deletion of Tssk1 and 2 causes male infertility due to haploinsufficiency. Dev Biol. 2008;319: 211–222. doi: 10.1016/j.ydbio.2008.03.047 18533145

24. Costa MM, Dios S, Alonso-Gutierrez, Romero A, Novoa B, Figueras A. Evidence of high individual diversity on myticin C in mussel (Mytilus galloprovincialis). Dev Comp Immunol. 2009;33: 162–170. doi: 10.1016/j.dci.2008.08.005 18789353

25. Gao D, Qiu L, Gao Q, Hou Z, Wang L, Song L. Repertoire and evolution of TNF superfamily in Crassostrea gigas: Implications for expansion and diversification of this superfamily in Mollusca. Dev Comp Immunol. 2015;51: 251–260. doi: 10.1016/j.dci.2015.04.006 25910814

26. Song K, Li L, Zhang G. Relationship among intron length, gene expression, and nucleotide diversity in the pacific oyster Crassostrea gigas. Mar Biotechnol. 2018;20: 676–684. doi: 10.1007/s10126-018-9838-0 29967965

27. Su D, Zhang W, Yang Y, Deng Y, Ma Y, Song H, et al. Mutation screening and association study of the TSSK4 gene in Chinese infertile men with impaired spermatogenesis. J Androl. 2008;29: 374–378. doi: 10.2164/jandrol.107.004598 18390560

28. Zhang H, Su D, Yang Y, Zhang W, Liu Y, Bai G, et al. Some single-nucleotide polymorphisms of the TSSK2 gene may be associated with human spermatogenesis impairment. J Androl. 2010;31: 388–392. doi: 10.2164/jandrol.109.008466 19926886

29. Ohresser M, Borsa P, Delsert C. Intron-length polymorphism at the actin gene locus mac-1: a genetic marker for population studies in the marine mussels Mytilus galloprovincialis Lmk. and M. edulis L. Mol Mar Biol Biotechnol. 1997;6(2): 123–130. 9200839

30. Daguin C, Bonhomme F, Borsa P. The zone of sympatry and hybridization of Mytilus edulis and M. galloprovincialis, as described by intron length polymorphism at locus mac-1. Heredity. 2001;86: 342–354. 11488971

31. Arias A, Freire R, Mendez J, Insua A. Intron characterization and their potential as molecular markers for population studies in the scallops Aequipecten opercularis and Mimachlamys varia. Hereditas. 2009;146: 46–57. doi: 10.1111/j.1601-5223.2008.02075.x 19490165

32. Teixeira KN, Souza KN, Vidigal THDA, Brito C, Santos AMC, Santoro MM. Size polymorphism in alleles of the myoglobin gene from Biomphalaria mollusks. Genes. 2010;1 357–370. doi: 10.3390/genes1030357 24710092

33. Vera M, Martinez P, Poisa-Beiro L, Figueras A, Novoa B. Genomic organization, molecular diversification, and evolution of antimicrobial peptide myticin-C genes in the mussel (Mytilus galloprovincialis). PLoS One. 2011;6(8): e24041. doi: 10.1371/journal.pone.0024041 21904604

34. Li L, Zhao J, Wang L, Qiu L, Song L. Genomic organization, polymorphisms and molecular evolution of the goose-type lysozyme gene from Zhikong scallop Chlamys farreri. Gene. 2013;513: 40–52. doi: 10.1016/j.gene.2012.10.080 23142386

35. Dunn CW. Giribet G, Edgecombe GD, Hejnol A. Animal phylogeny and its evolutionary implications. Annu Rev Ecol Evol Syst. 2014;45: 371–395.

36. Brazeau MD, Friedman M. The origin and early phylogenetic history of jawed vertebrates. Nature. 2015;520: 490–497. doi: 10.1038/nature14438 25903631

37. Qiao T, King B, Long JA, Ahlberg PE, Zhu M. Early gnathostome phylogeny revisited: Multiple method consensus. PLoS One. 2016;11(9): e0163157. doi: 10.1371/journal.pone.0163157 27649538

38. Erwin DH, Davidson EH. The last common bilaterian ancestor. Development. 2002;129: 3021–3032. Available from 12070079

39. Blair JE, Hedges SB. Molecular phylogeny and divergence times of deuterostome animals. Mol Biol Evol. 2005;22(11): 2275–2284. doi: 10.1093/molbev/msi225 16049193

40. Vinckenbosch N, Dupanloup I, Kaessmann H. Evolutionary fate of retroposed gene copies in the human genome. Proc Natl Acad Sci USA. 2006;103: 3220–3225. doi: 10.1073/pnas.0511307103 16492757

41. Wang Z, Dong X, Ding G, LI Y. Comparing the retention mechanisms of tandem duplicates and retrogenes in human and mouse genomes. Genet Sel Evol. 2010;42: 24. doi: 10.1186/1297-9686-42-24 20584267

42. Wang P, Huo HL, Wang SY, Miao YW, Zhang YY, Zhang QL, et al. Cloning, sequence characterization, and expression patterns of members of the porcine TSSK family. Genet Mol Res. 2015;14(4): 14908–14919. doi: 10.4238/2015.October.18.56 26600552

43. Kim H, Jeon MA, Choi JS, Kim BH, Son MH, Lee JS. Morphological Sex Differentiation of the Abalone Haliotis discus hannai. Korean J. Malacol. 2015;31(4) 273–277. doi: 10.9710/kjm.2015.31.4.273

44. Boutet I, Moraga D, Marinovic L, Obreque J, Chavez-Crooker P. Characterization of reproduction-specific genes in a marine bivalve mollusc: Influence of maturation stage and sex on mRNA expression. Gene. 2008;407: 130–138. doi: 10.1016/j.gene.2007.10.005 17976928

45. Piferrer F, Beaumont A, Falguiere J-C, Flajshans M, Haffray P, Colombo L. Polyploid fish and shellfish: Production, biology and applications to aquaculture for performance improvement and genetic containment. Aquaculture. 2009;293: 125–156. doi: 10.1016/j.aquaculture.2009.04.036

46. Dheilly NM, Jouaux A, Boudry P, Favrel P, Lelong C. Transcriptomic profiling of gametogenesis in triploid pacific oysters Crassostrea gigas: Towards an understanding of partial sterility associated with triploidy. PLoS One. 2014;9(11): e112094. doi: 10.1371/journal.pone.0112094 25375782

47. Suquet M, Malo F, Quere C, Ledu C, Grand JL, Benabdelmouna A. Gamete quality in triploid Pacific oyster (Crassostrea gigas). Aquaculture. 2016;451: 11–15. doi: 10.1016/j.aquaculture.2015.08.032

48. Jee YJ, Nam BH, Lee JY, Chang YJ. Maturity and spawning of the triploid pacific abalone, Haliotis discus hannai. Korean J. Malacol. 2013;29(2): 105–111. doi: 10.9710/kjm.2013.29.2.105

49. Fischer BE, Wasbrough E, Meadows LA, Randlet O, Dorus S, Karr TL, Russell S. Conserved properties of Drosophila and human spermatozoal mRNA repertoires. Proc Biol Sci. 2012;279: 2636–2644. doi: 10.1098/rspb.2012.0153 22378807

50. Ren X, Chen X, Wang Z, Wang D. Is transcription in sperm stationary or dynamic? J Repro Dev. 2017;63: 439–443. doi: 10.1262/jrd.2016-093 28845020

Článek vyšel v časopise


2019 Číslo 12